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Abstract

Subjects have been shown to mistake perceptual and imaginative experience (Perky, 1910).
The synergy between imagination and perception is a subject of debate (Cavedon-Taylor,
2021; Brogaard and Gatzia, 2017; Nanay, 2010), and there have been studies (Dijkstra,
Bosch and van Gerven, 2017) which attempt to clarify what connection these two modalities
hold. The overall goal of this project is to create an automated pre-processing pipeline
to clean EEG data. Following this, we can attempt to decode (classify) what a person
is thinking about based upon their neural activity. Through this context, a comparison
of stochastic and deterministic machine learning model performance is drawn. For
classiőcation purposes the advantage in a probabilistic approach would be conődence in
outcome. Conődence intervals allow us to see where a model underperforms and draw
conclusions as to why. In real world Brain Computer Interface applications, this kind of
transparency in analysis would be beneőcial for Electroencephologram. If there is high
certainty for two classes which are similar in semantics/content, it would be safe to proceed
with either class.

An automated pre-processing pipeline is also proposed, which attempts to clean a raw
data signal, removing stationary signals and artifacts. This primarily uses a combination
of python packages, most notably

• Python MNE (Gramfort et al., 2013a; Li et al., 2022) - A tool for use in neuroscience
analysis with a high level sklearn like interface.

• EEGLab (Delorme and Makeig, 2004) - An open source toolbox for analysis of
single-trial EEG dynamics including independent component analysis.

• Autoreject (Jas et al., 2016) - A library to automatically reject bad trials and
repair bad sensors in magneto/electroencephalography (M/EEG) data.

• Pyriemann (Barachant and King, 2015) - A machine learning library based on
scikit-learn API. It provides a high-level interface for classiőcation and manipulation
of multivariate signal through Riemannian Geometry of covariance matrices.

• IC-Label (Pion-Tonachini, Kreutz-Delgado and Makeig, 2019) - An automated
procedure to classify IC using a trained neural network on thousands of IC’s.

A comparison between both AudViz and Bath datasets (Section 4.1) for the entire pipeline
was performed across both all modalities (audio, visual and orthographic) and individually,
which was shown to perform well with the prior. After 100 independent trials with unique
random seeds, each with 5-fold cross validation, performance greater than the baseline of
3 class classiőcation (33.3%) was not achieved on the latter. The nature of classiőcation
for imagination and perception is a broader problem than the lateralized classes in the
AudViz dataset, which involves tasks separated by the left and right audio and visual
responses.

All of the code required to reproduce the experiments described in later chapters is located
here.

https://mne.tools/dev/overview/datasets_index.html
https://github.com/sourestdeeds/imagination-vs-perception


Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Deterministic vs. Probabilistic . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Semantic Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.7 Resources Required . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Literature and Technology Survey 9

2.1 Neuroscience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Python MNE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Deterministic Machine Learning . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Probabilistic Machine Learning . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 Classiőcation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.6 Further Reading/Considerations . . . . . . . . . . . . . . . . . . . . . . . 26

3 Requirements 27

4 Design 29

4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Exploratory Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Pre-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Implementation and Testing 41

5.1 Pre-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6 Results 48

6.1 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7 Conclusion 54

Bibliography 59

A Misc 66

ii



CONTENTS iii

B Results 68

B.1 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

C Code 83

C.1 Pre-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
C.2 Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
C.3 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
C.4 Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89



List of Figures

1.1 A commonly used Brain Computer Interface, Electroencephalogram. . . . 2
1.2 The 10:20 montage is a method to describe the locations of applied scalp

electrodes in EEG (Reaves et al., 2021). . . . . . . . . . . . . . . . . . . 4
1.3 A common spatial pattern applied where someone is imagining raising their

left or right hand (Mane, Biradar and Shastri, 2015). . . . . . . . . . . . 4
1.4 Model comparison in terms of layer mapping to the visual cortex (Hartmann,

Schirrmeister and Ball, 2018; Dupre La Tour et al., 2021). . . . . . . . . 5
1.5 Three semantically different categories to be used in the imagination study

displayed using Hyperalignment akin to Haxby et al. (2020). . . . . . . . 6
1.6 The proposed pre-processing pipeline. . . . . . . . . . . . . . . . . . . . . 6

2.1 A fully connected artiőcial neural network. . . . . . . . . . . . . . . . . . 17
2.2 An illustration of the smoothing beneőts of the swish activation versus relu

(Ramachandran, Zoph and Le, 2017). . . . . . . . . . . . . . . . . . . . . 18
2.3 A random forest where bootstrapped samples are voted into a őnal class. 21
2.4 Maximum-margin hyperplane and margins for an SVM trained with samples

from two classes. Samples on the margin are called the support vectors. . 22
2.5 A Bayesian neural network with two layers of weights. The input has D

dimensions, M hidden units and K outputs. The hyperparameters αv and
αw correspond to the input hidden weights V and output weights w. . . 23

2.6 A Bayesian neural network with two layers with an ARD prior. There are
D individual hyperparameters αv1, . . . , αvD each corresponding to an input
xd. The output layer is the same as before. . . . . . . . . . . . . . . . . . 24

2.7 Perception and imagery versus baseline. Blue-green represents t values
for perception versus baseline. Red-yellow represents t values for imagery
versus baseline (Dijkstra, Bosch and van Gerven, 2017). . . . . . . . . . . 26

2.8 Sagittal MRI scans of the human brain can be used to detect changes in
brain activity to offer clues as to what a person is dreaming (Siclari et al.,
2017). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1 The timings of the different event modalities for the imagination and
perception dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 The extracted epochs from the AudViz dataset. . . . . . . . . . . . . . . 31
4.3 The power spectral density is similar to a histogram for frequency information.

The spike ≈ 50− 60Hz is likely due to AC powerline artifacts. Negative
values on the dB scale suggest that the power is less than the reference
power. Higher values indicate a more powerful signal. . . . . . . . . . . . 31

4.4 The approximate ANT-Neuro, 10:20 montage mapping. . . . . . . . . . . 32

iv



LIST OF FIGURES v

4.5 The visual artifacts driven by eye muscles. . . . . . . . . . . . . . . . . . 34
4.6 The Power Spectrum Density with the notch őlter applied. . . . . . . . . 34
4.7 The automated algorithm used to automatically reject bad epochs (Jas

et al., 2016). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.8 The confusion matrices for Random Forest, Support Vector Machine, and

Logistic Regression, applied to the mne sample dataset AudViz, pre-processed
with the xDAWN and Riemann Geometry pipeline. . . . . . . . . . . . . 39

4.9 The confusion matrices and history for EEGNet and TSGL-EEGNet,
applied to the mne sample dataset AudViz. Subplot 5.4e shows an improved
convergence, thus this does indicate the modiőcations perfom as expected. 39

4.10 The confusion matrices for Gaussian Process, Stochastic Gradient Descent

and Linear Discriminant Analysis, applied to the mne sample dataset
AudViz, with the feature extraction of the xDAWN and Riemann Geometry

pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1 Channel spectra and topographical maps. Each coloured line represents a
single channels spectral activity. . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 ICA component 5, suggesting a high probability of brain activity from
ICA-Label. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3 The probability distributions suggesting possible signal sources using ICA-Label.
We aim to have cleaned data prior to őtting ICA such that we maximise
the brain signal components discovered. . . . . . . . . . . . . . . . . . . . 43

5.4 Our data was recorded at a sample rate of 1080Hz, and Figure 5.4b shows
that we can reduce our samples by 5x and preserve similar spatial patterns.
Such downsampling is beneőcial for the feature extraction and decoding
stage, as there is less data to compute. Figure 5.4c illustrates the interactive
epoch and channel rejection process, to manually inspect and clean the
data by eye. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.1 Comparing to the plots in Appendix B.1 the signals in the Audviz dataset
appear to be cleaner with a stronger correlation between less channels, and
less outliers. A similar amount of epochs and events are rejected at the
Ransac/Autoreject stage, yet the before and after psd plots show that a
similar distribution is maintained. The ICA proposal plot suggests many
of the artifacts present were carefully handled during the collection stage. 50

6.2 The xDawn covariances show the difficulties facing the baseline classiőcation
accuracy for the Bath dataset. . . . . . . . . . . . . . . . . . . . . . . . . 51

7.1 The xDawn Covariances show the difficulties facing the baseline classiőcation
accuracy for the Bath dataset. The motor imagery dataset also shows good
class separation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.2 The confusion matrices for the Motor Imagery and AudViz datasets,
processed with the full pipeline. . . . . . . . . . . . . . . . . . . . . . . . 57

7.3 The minimum distance to mean covariances for both bath and motor
imagery datasets illustrate the difficulties facing a classiőer. The signal
appears very ŕat and featureless. . . . . . . . . . . . . . . . . . . . . . . 58

A.1 Initial timeline proposal for the machine learning pipeline. . . . . . . . . 67



LIST OF FIGURES vi

B.1 10-1 appears to have a rogue channel which is an order of magnitude greater
than the others. Strong event related potentials seem to occur in all subjects
around the 0.3 and 3 second mark. 8-2 and 14-2 look the cleanest, yet it
was noted during the recording that event timings were corrupted which
will compound timing errors with future processing. . . . . . . . . . . . . 69

B.2 14-2 and 17-1 appear to have a rogue channel which is likely caused by a
faulty sensor with poor scalp contact. . . . . . . . . . . . . . . . . . . . . 70

B.3 At a glance, we can see similarities across the different subjects raw data,
which at this stage is more indicative of the artifacts present in the shared
environment they were recorded in. . . . . . . . . . . . . . . . . . . . . . 71

B.4 Very few bad epochs and channels are detected in participant 14, in
agreement with previous analysis suggesting that this trial had less artifacts
present. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

B.5 After ransac and autoreject, we observe that the signals are much more
constrained and share similar event timings between participants. . . . . 74

B.6 The variance between channels in participant 14 are well constrained. In
comparison to the PSD before ransac (Figure B.2) we can see that the
automated cleaning process has had a positive effect in cleaning rogue
channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

B.7 Participant 14 appears to have a smoother transition in its signal to noise,
and exhibits much more constraint as previously shown. The others have
signiőcantly more variance in this regard. . . . . . . . . . . . . . . . . . . 76

B.8 Again, participant 14 can be seen to have consistent signals across the
channels. Visual inspection suggests we can see possible patterns but still
the signal to noise is quite poor. . . . . . . . . . . . . . . . . . . . . . . . 77

B.9 The components marked as brain activity, automatically classiőed using
IC-Label. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

B.10 The components marked as brain activity, automatically classiőed using
IC-Label. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

B.11 The effect of ICA decomposition. Marked in red are the signals before, and
black after cleaning. Strong spikes remain in all but participant 17. . . . 80

B.12 The signal to noise issues present before ICA show improvement from
before, indicating that many of the artifacts showing long term trends have
been removed, leaving us primarily with non-stationary data. . . . . . . . 81

B.13 The events listed here show the impact of the entire pipeline in comparison
to Figure B.3, before any pre-processing. It can be seen that the differences
are quite drastic, and much of the artifacts appear to have been removed.
Its possible this approach is too aggressive, but the nature of this dataset
in particular is a challenge for decoders to see any separation between the
classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



List of Tables

4.1 The event labels for the AudViz Dataset. . . . . . . . . . . . . . . . . . . 37
4.2 The model prototype accuracy tested on the AudViz Dataset, with 100 trials

and 3 fold cross validation at the training stage, evaluated on a hold out test
set. The feature extraction involves the xDAWN and Riemann Geometry

pipeline. Without this stage, average accuracy was ≈ 63%. The mean,
minimum and maximum accuracy is shown for each model, suggesting
that the best performing standard model on average for this particular eeg
dataset is Logistic Regression. The neural networks show improved average
performance, however the computation time for 100 trials takes ≈ 2 hours
to perform, compared to ≈ 15 minutes for the others. . . . . . . . . . . . 38

5.1 The model accuracy tested on the cleaned Bath Dataset, with 100 trials and
3 fold cross validation at the training stage, evaluated on a hold out test
set. The feature extraction involves the xDAWN and Riemann Geometry

pipeline. Without using the preprocessing pipeline, the raw data average
accuracy was ≈ 33%. The mean, minimum and maximum accuracy is
shown for each model, which appear to have no statistical difference. . . 47

6.1 The model accuracy tested on the Bath Dataset including all modalities
(both Imagination and Perception), with 100 trials and 3 fold cross validation
at the training stage, evaluated on a hold out test set. The feature extraction
involves the xDAWN and Riemann Geometry pipeline. Both raw and
cleaned data average accuracy was 33%±1%. The mean, minimum and
maximum accuracy is shown for each model. There appears to be no
signiőcance to the results, as greater than baseline accuracy was not achieved. 51

6.2 The model accuracy tested on the Bath Dataset across individual modalities
(Perception), with 100 trials and 3 fold cross validation at the training
stage, evaluated on a hold out test set. The feature extraction involves
the xDAWN and Riemann Geometry pipeline. Both raw and cleaned
data average accuracy was 33%±1%. The mean, minimum and maximum
accuracy is shown for each model. There appears to be no signiőcance to
the results, as greater than baseline accuracy was not achieved. . . . . . . 52

vii



LIST OF TABLES viii

6.3 The model accuracy tested on the Bath Dataset across individual modalities
(Imagination), with 100 trials and 3 fold cross validation at the training
stage, evaluated on a hold out test set. The feature extraction involves
the xDAWN and Riemann Geometry pipeline. Both raw and cleaned
data average accuracy was 33%±1%. The mean, minimum and maximum
accuracy is shown for each model. There appears to be no signiőcance to
the results, as greater than baseline accuracy was not achieved. . . . . . . 53



Acknowledgements

I dedicate this work to Gina Charles, my mother, whom without her support in recent
years I would not be where I am now. The sacriőces she made to provide me future success
is a rare act of selŕessness, and to say that I am grateful would be greatly understated.

I’d also like to thank Holly Wilson for our abstract debates on the mind, which formed
much of my critical thought process in the review.

ix



Chapter 1

Introduction

1.1 Motivation

The overall goal of this project is to decode (classify) what a person is thinking about based
upon their neural activity, and secondarily to compare the suitability of deterministic and
stochastic machine learning approaches in this setting. We propose to take Electroen-

cephalogram (Chapter 2.1.2) neural data off participants when they perform a particular
task. This will then be decoded using various machine learning approaches (Chapter 2.3)
to train on perceived stimuli and extract a label to correctly classify the signal, focusing
on decoding imagined stimuli.

One particular study by Perky (1910), now called The Perky Effect, had subjects report
an imaginary experience that reŕected a projected image which was higher than the
visible threshold. When quizzed afterwards they stated that they did not see anything.
This suggests that subjects mistake perceptual experience for imaginative experience.
That they possibly didn’t have a perceptual experience but their unconscious perception
inŕuenced their imaginative experience.

In light of such phenomenon, I aim to research the synergy of imagination and perception
(Chapter 2.1.4) to determine how possible the decodability of a classiőcation signal depends
on an individuals capacity for vivid imagination.

The primary objective will be to create an automated pre-processing pipeline to clean the
input signal from artifacts, and determine if classiőcation is possible with the imagination
and perception Bath dataset (Section 4.1).

Secondarily, I intend to draw comparisons between deterministic and stochastic (Chapters
2.3, 2.4) machine learning approaches, as the latter has not been widely adopted in
Neuroscience, yet Bielza and Larrañaga (2014) suggests this may change going forward.

Brain Computer Interfaces (Figure 1.1) measure neural signals where a participant is
performing a particular task. These signals can be used with different kinds of neuroimaging
modalities such as electroencephalography or functional magnetic resonance imaging. Once
the neural signals are obtained we can attempt to decode some information about the
task that the person was performing when the brain activity was measured. If we were to
make measurements while a person was moving their hand to the left or right, and try to
decode their intention, we can translate this signal into an external action, for example,

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: A commonly used Brain Computer Interface, Electroencephalogram.

moving a robot left or right. Imagination can also be captured, where the intent can be
deciphered and decoded to then be translated into external actions. With this in mind,
we can ask the question

łDoes decodability depend on an individuals capacity for vivid imagination?ž

As the capacity to imagine vividly varies from subject to subject, its unclear whether the
ability to decode imagination is invariant to this phenomenon.

The different types of BCI inputs in our dataset include:

• Imagination vs Perception

– Perceived stimuli: Directly interacting with sensory modalities.
– Imagined stimuli: Recreate an abstract modality mentally.

Imagined stimulus is more valuable as the BCI user can generate any picture or
sound mentally, to try and drive BCI rather than relying on modality already present
in their external environment.

• Sensory Modalities

– Pictorial: imagining a picture.
– Orthographic: imagining text.
– Auditory: imagining sounds.

For example, we can imagine an image, text and sound form of coffee. All are
semantically coffee, but can be represented in different modalities.

The general areas we are interested in for these studies occur in the neocortex. The
neocortex is one of the most recently evolved parts of the brain (Lee et al., 2019). The
gyri and sulcus (brain ridges) create more surface area proportional to their quantity,
and in general a higher number is linked to increased intelligence (Rushton and Ankney,
2009). We can divide the neocortex into different sensory modalities, of which these are
processed in speciőc regions of the brain. Despite this, the architecture driving these are
equivalent (Meijer et al., 2019).
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If someone is born congenitally blind from birth, we might őnd that areas associated
with visual processing can be repurposed into auditory processing (Burton, 2003). While
processing for the visual and auditory cortices occurs uniformly across the entire brain,
speciőc regions can be targeted which have a higher concentration of use for different
tasks (Lewis, Beauchamp and DeYoe, 2000).

1.2 Deterministic vs. Probabilistic

Philosophically, it can be argued that crossing the road is both deterministic and
probabilistic. We make the choice to cross safely based on past experiences, which
are set variables, and given current events the same outcome would always be chosen.
Such an assumption is deterministic. But when choosing to cross, there is a level of
hesitation in the moment, only when our conődence in the priors reaches a threshold do
we act and cross. Thus the same concept could be probabilistic.

In machine learning, a deterministic approach could for example, consist of a standard
Convolutional Neural Network, later described in Chapter 2.3.2. Each input would produce
the same output. A probabilistic model such as Bayesian CNN (Chapter 2.4.1) (Yamins
et al., 2014) would have probability distributions for each neuron instead of linear weights,
thus each input would produce a different probabilistic outcome.

For classiőcation purposes the advantages in a probabilistic approach would be conődence
in outcome, allowing us to see where a model underperforms and draw conclusions as
to why. In real world BCI application, this kind of transparency in analysis would
be beneőcial for EEG. If there is high certainty for two classes which are similar in
semantics/content, it would be safe to proceed with either class.

The secondary aim of this project is to analyse the performance of both approaches when
applied to our dataset.

1.3 Data Collection

Our dataset aims to answer the following questions:

• Is there an overall variance depending on how vividly an individual imagines?
• Which neural signals (regions and timepoints) enable us to classify invariant of their

vividness, such as regions related to semantics.

The data is to be collected at the University of Bath, involving 20+ participants neural
data, collected from 128 EEG channels using ANT-Neuro hardware and a 10:20 montage1.
Auditory and visual imagery vividness will be collected separately. Each electrode records
a combination of inhibitory and excitatory neurons in the billions. Such a complex signal
is considered macro level, due to the signal detection occurring on the surface of the
brain. Neural activity of approximately 5-6cm2 is captured, by comparison fMRI captures
around 2mm2. EEG is therefore quite low in spatial resolution, but very fast in temporal
resolution, of which we can record 16000 samples a second.

Gel is placed on the electrodes to boost conductivity and an ampliőer is used to boost the
signal by 100,000 times. Such a process has a very high signal to noise ratio, due to the

1The 10:20 montage refers to the 10% or 20% inter-electrode distance (Fig 1.2)

https://www.ant-neuro.com/products
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Figure 1.2: The 10:20 montage is a method to describe the locations of applied scalp
electrodes in EEG (Reaves et al., 2021).

signal dispersing through the scalp and skull, transferring outwardly to the electrodes. The
brain stem and hippocampus is difficult to measure with EEG as a result, thus processing
of the raw data to remove noise will be required.

Figure 1.3: A common spatial pattern applied where someone is imagining raising their
left or right hand (Mane, Biradar and Shastri, 2015).

Lateralisation will also have an impact on the kinds of data used; visual tasks have
their processing roles reversed from left to right, where auditory tasks involving speech
speciőcally occur mostly use the left (Figure 1.3).

1.4 Semantic Representation

Semantic decoding refers to the identiőcation of semantic concepts (Rybář, Poli and Daly,
2021). Previous work has shown that multiple categories can be classiőed accurately,
provided that they are semantically different. Semantic difference can be displayed using
a technique called Hyperalignment (Haxby et al., 2020). We have selected penguin, guitar

and flower for categories to be used in the study using this method (Figure 1.5). They
were chosen because of their high semantic difference, in the hope that in the brain there
is also a distinct representation to measure.

The study involves people performing both imagination and perception tasks. For example,
a penguin is shown on the screen, and they would be asked to reconstruct the picture
mentally. The three categories of penguin, guitar and ŕower will be represented in three
sensory modalities (Macpherson, 2011), pictorial, orthographic and auditory.
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Figure 1.4: Model comparison in terms of layer mapping to the visual cortex
(Hartmann, Schirrmeister and Ball, 2018; Dupre La Tour et al., 2021).

1.5 Preprocessing

We intend to experiment with both the raw and pre-processed data for classiőcation. The
proposed preprocessing steps are shown in Figure 1.6. In removing noise, the intention
is that we classify based upon the intended signal. By classifying on the raw data, we
establish a baseline by which we can judge improvements made by preprocessing.

The proposed steps are as follows:

• Import in the raw data and events.
• Downsample the data.
• Apply a bandpass őlter.

– There will be unwanted noise in the day from the environment and muscle
movement. Use a high and low pass őlter. High pass to remove DC components.
Low őlter to remove high frequency components.

• Re-reference the data.
– Provides a baseline activity of physiological noise. We get this from the reference

electrodes, usually positioned on the mastoid bone (behind ear).
• Inspect the electrodes and noisy channels.

– Reject or interpolate. We only reject channels that are often noisy rather than
ones which show periodic noise.

• Epoching.
– Detecting experimental events based on triggers.
– Reject bad epochs.

• Run ICA to reject noisy components.
– This helps us get rid of components of the data that are heavily inŕuenced by

motor related artefacts.
• Detect experimental events.

– We are primarily interested in activity associated with our semantic modalities,
thus everything else can be considered as noise.
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Figure 1.5: Three semantically different categories to be used in the imagination study
displayed using Hyperalignment akin to Haxby et al. (2020).

Figure 1.6: The proposed pre-processing pipeline.

1.6 Pipeline

The initial approach would be to combine all three sensory modalities and apply a machine
learning decoder to obtain the categorical output. We can then follow up with further
investigative study decoding individual modalities linked to the concept of the associated
imagination, and be able to ignore semantics such as a particular instance of the object.

When we want to perform classiőcation from independent EEG channels (electrodes) we
can use raw data and deep learning algorithms to bypass any pre-processing steps as such
models are capable of implicitly őnding the associated patterns. Even so, pre-processing
in this case may prove advantageous, and certainly for other algorithms such as Support

Vector Machines, pre-processing input is necessary.
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1.6.1 Preprocessing

Initial pre-processing would be to remove artefacts (such as eye movement blinks which
cause spikes in amplitude), and bad channels (when the electrodes suffer from low
impedance). Time window selection such as fourier/wavelet/spatial transforms would
also allow us to extract speciőc features useful for classiőcation (Mane, Biradar and
Shastri, 2015). Image transforms such as in Figure 1.3 are useful translations as inputs
for Convolutional Neural Networks.

Visual processing occurs much like a CNN in Figure 1.4, where we have various kinds of
őlters, orientations and colours (Hartmann, Schirrmeister and Ball, 2018; Dupre La Tour
et al., 2021). Different layers deal with different types of information.

1.6.2 Machine Learning Models

The secondary goal of this project is to assess whether probabilistic models (which introduce
more model complexity) have advantages over the standard deterministic approaches
performed previously. There are many to choose from to draw comparisons from, but I
will focus on Support Vector Machines, Random Forests and Neural Networks as these
were shown to be the most popular in the őeld (Reaves et al., 2021).

Support Vector Machines

Dabas et al. (2018) used Support Vector Machines to classify EEG based emotional signals.
They reported notably that SVMs in this instance were more accurate than a Naive Bayes

approach. Interesting to note here, that the Naive Bayes method is not strictly Bayesian
and could be arguably deterministic in this use case.

Random Forests

Bellman et al. (2018) used Random Forests to perform classiőcation predictions to measure
an individuals capability of facial recognition, and states that

łIt was found that, outperforming previous works, unaware facial recognitions
could be detected with fairly high accuracies using a method that combines
multiple sensors from a BCI device and utilizing out-of-the-box classiőcation
methods.ž

Thus there is a possible argument for model simplicity of the deterministic approach.

Neural Networks

Previous work for mapping CNN layers to brain regions (Yamins et al., 2014) uses the
voxelwise encoding (Wu, David and Gallant, 2006) framework. Initially, brain activity is
recorded while a subject is exposed to visual stimuli. The same stimulus is then shown to
a pretrained CNN. Lastly, a regression model is trained on each voxel2 to predict brain
activity to classify features.

It could be proposed that we could classify each imagined category using a deterministic
convolutional neural network (Roy et al., 2019) initially, then adopt a more probabilistic

2A voxel is a 3D pixel.
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model such as a Bayesian CNN (Yamins et al., 2014). In the context of neuroscience, an
excellent review of their use in the őeld is given by Bielza and Larrañaga (2014), of which
he states that

łDespite their applicability in many őelds, they have been little used in
neuroscience, where they have focused on speciőc problems, like functional
connectivity analysis from neuroimaging data.ž

Of which presents itself that the probabilistic approach in neuroscience is largely unexplored.

1.7 Resources Required

It is anticipated that the dataset, consisting of 128 independent EEG channels (features),
and the semantic/modality labels, will be computationally expensive. This will be noted
before the implementation stage to be considered when choosing machine learning models.
Access to the HEX (Bath, 2022) cluster is possible should the need arise however, should
this level of scale be required.

Tools for EEG analysis such as MNE (Gramfort et al., 2013a) and EEGLab (Delorme and
Makeig, 2004) in python and matlab will be used to perform pre-processing steps for later
input to the machine learning pipelines. Other python packages such as Numpy, Pandas,

Matplotlib, Seaborn, Tensorflow, Keras and Sklearn will also likely prove useful
in the design stage, described further in Chapter 3. Bambi (Capretto et al., 2020) will
likely be a great exploration tool for the analysis of probabilistic methods.



Chapter 2

Literature and Technology Survey

This review is split up into two main sections. Neuroscience in Section 2.1 provides context
towards the main project aim towards decodability of imagination and perception. The
Machine Learning review in Sections 2.3 and 2.4 cover a brief history and explanation of
each method commonly used, and propositions for use in this study.

2.1 Neuroscience

While this project is primarily based upon building a machine learning pipeline, comparing
deterministic and probabilistic models applied to EEG data, background context is needed
to draw conclusions from the classiőcation and predictions computed. The overarching
aim from the machine learning model is to determine if imagination and perception have
any correlative forms when decoding.

We begin with a discussion on Brain Computer Interfaces in Section 2.1.1, and how this
őts into our use case with the use of Electroencephologram expanded upon in Section 2.1.2.
This section also covers the data collection, pre-processing and common machine learning
approaches taken previously.

As we aim to determine the decodability for vivid imagination, underlying context into
the current discourse in this area has been provided in Section 2.1.4. Aphantasia, for
example, (Section 2.1.5) is a phenomenon where individuals are blind to the experience of
visual imagery in the mind. Such conditions need special consideration in our study, and
may explain discrepancies in future outcomes.

2.1.1 Brain Computer Interfaces

Technological advancement in neuroscience has provided solutions to many problems
through the use of captured neurological signals using Electroencephalography (EEG)
(Olejniczak, 2006; Mane, Biradar and Shastri, 2015) and functional Magnetic Resonance
Imaging (fMRI) (Gore, 2003). Neurological data capture devices such as these when
combined with a computer interface to control external devices are often called brain com-

puter interfaces. BCI’s allow the control of these devices through brain wave interpretation.
They have assisted in the detection and treatment of neurological afflictions through

9
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neurofeedback signals speciőc to each person. Other uses of BCI’s allow the use of external
devices such as prostheses or autonomous systems.

BCI’s can be used for communication interfaces; someone with paralysis could potentially
move a mouse cursor through imagined motor movements. Studies such as these (Sun,
Hsieh and Syu, 2020) also give insight and understanding of the human mind. EEG’s are
a cost effective and portable solution when compared with fMRI (Rybář, Poli and Daly,
2021). EEG’s strengths lie in its high temporal resolution, with a weakness in spatial
resolution.

The primary challenges of such systems are their inherent noise associated with the
received signal, and the ability to acquire detailed information from the observed signals.
In this vein, more collaboration between computer scientists and neuroscientists is required
to keep up with advancements in both őelds. EEG signals have inherent non-stationarity
which complicates the ability for a model to genereralise; signals vary between subjects
depending on their current mind state.

2.1.2 Electroencephologram

Electroencephologram (EEG) gives us a measure of the electrical activity in the brain,
recording frequencies observed through the brain’s current activity. EEG signals were
notably discovered in 1875, through Richard Caton’s work with animals (Hosseini, Hosseini
and Ahi, 2020), the term itself was claimed by Dr. Hans Berger in 1924 upon successfully
recording the őrst brain signals using this approach. Olejniczak (2006) states that EEG is

łA graphic representation of the difference in voltage between two different
cerebral locations plotted over time, mostly consisting of synaptic activity,
though contaminated with noise from other sources and distorted by the signals
measurement through the skull.ž

EEG is often used in neuroscience, of which the primary modes of study have been in
motor, cognitive and sensory imaging. Its high temporal resolution and low cost have
made it popular, in part due to its non-invasive techniques. The drawback is that the
skull obscures the information transferred, which means that EEG has a low signal to
noise ratio, compounded by other noise artifacts such as motion. The signals themselves
also have inconsistency between individuals, inŕuenced by emotional state and movement.

2.1.3 Data Collection and Pre-Processing

EEG data collection typically focuses on target frequencies known to be associated with
a particular research problem. Data collection through electrode placement is classiőed
into a 10:20 montage in our study, which adheres to a national standard (Oostenveld and
Praamstra P, 2001). In the 10:20 system (Figure 1.2), electrodes are 10% and 20% of the
skulls left to right, and front to back, distance apart respectively.

Wavelengths used in EEG vary between delta (δ < 4Hz), theta (θ ≈ 4-8Hz), alpha (α ≈
8-12Hz), beta (β ≈ 12-30Hz) and gamma (γ ≈ 30-45Hz). Delta waves are typically
removed in the pre-processing steps, as they are assumed to be less useful.
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Denoising

Noise removal in the initial stage uses an approach called denoising. Most commonly, the
technique applies a bandpass őlter which allows a speciőc frequency to be investigated.
As mentioned before, low frequencies such as delta (δ < 4Hz) are associated with
muscle-movement and generally the őrst to be removed. Often, more dynamic őlters are
used, such as Volterra (Wu, Zhang and Xiaojun, 2019) or Butterworth (Molla et al., 2020)
for more complex tasks. More complex still, are fully adaptive őlters such as the one used
in Torse and Desai (2016), which have use cases in epilepsy detection.

By selecting a frequency range, much of the noise is removed, yet artifacts can still
remain. To combat this, a technique called Independent Component Analysis is used to
automatically remove them (Torse and Desai, 2016). In contrast to Principal Component

Analysis, which is used for dimensionality reduction, ICA aims to separate the information
by transforming it to a maximally independent basis.

As EEG data is non-stationary, time-frequency analysis gives us temporal information,
indicating when artifacts are likely to occur. The difficulty in artifact removal (Zotev
et al., 2014) is to isolate movement noise such as heart rate and eye blink. EEG data most
commonly employs Wavelet Transforms (Collazos-Huertas et al., 2020) to assist in the
denoising process. This őlter has the added beneőt of dimensionality reduction, caused in
part by the reconstruction process. Zotev et al. (2014) uses a variation of this called the
Flexible Analytic Wavelet Transform.

Fourier Transforms are used to deconstruct a received signal into its component frequencies,
however time information is lost through this method. Because of this, it is not often
used with EEG. There are cases (Santoso, 2020) where time information can be preserved
through the use of windowing, applying FT to subsets of the data.

Feature Extraction

At the feature extraction stage, regression models (Russel and Norvig, 2002; Bishop, 2006)
are commonly used. Some examples include Support Vector Machines (Zhang, 2020),
Principal Component Analysis (Miranda, Aranha and Ladeira, 2019), Ensemble Learning

(Li et al., 2020) and Extreme Gradient Boosting (Russel and Norvig, 2002).

More recently, Neural Networks (Section 2.3.1) and Convolutional Neural Networks

(Section 2.3.2) have become popular due to their ability to approximate underling functions
in data irrespective to noise (Luo, Hu and Li, 2020).

Classification and Prediction

The accuracy of the classiőcation stage is dependant on the quality and amount of features
extracted during the pre-processing steps. Transfer Learning, where we use previously
trained neural networks, would allow for more accurate predictions from smaller datasets,
should the need arise in our study. Reaves et al. (2021) suggests that transfer learning
will be an important procedure to adopt in EEG classiőcation going forward. As there are
inherent differences in signals between individuals, this process would allow for shortened
learning times and to generalise to a larger distribution.

Similarly to the feature extraction stage, many of the same models are used in the
classiőcation and prediction step. The most popular methods used previously, summarised
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in Reaves et al. (2021), suggests Support Vector Machines, k-Nearest Neighbour and
Convolutional Neural Networks dominate the őeld of EEG analysis.

2.1.4 Imagination and Perception

Cognitive penetration refers to the proposition that perceptual experiences are inŕuenced
by personal mental states such as our beliefs, expectations and emotions (Teng, 2021).
Macpherson (2012) presents various arguments for its existence. She states that

łIt is theorised to occur when one’s perceptual experience is altered by the
states of one’s cognitive system.ž

The theory is that there are two processes which together, if true, would amount to
deőning cognitive penetration. The őrst process suggests that cognitive states cause visual
imagining to occur, and the content of such imaginations reŕect ones beliefs or desires.
The second process is such that visual imagination interacts with perceptual processing
to yield one state with phenomenal character, as evidenced by the Perky Effect (Perky,
1910). Shoemaker (1994) describes that

łThe phenomenal character of an experience is what it is like subjectively
to undergo the experience. If you are told to focus your attention upon the
phenomenal character of your experience, you will őnd that in doing so you
are aware of certain qualities.ž

This character would be determined by both the processing underlying the visual imagining
and perception.

Carbon (2014) suggests that states that are inŕuenced by cognitive states can interact
with the phenomenal character of perpetual experiences. Such interactions could possibly
account for cases where illusory perception is detected.

The relevance to our study is the interaction between imagination and perception. If
we can őnd correlation between the two signals it would provide further evidence for
phenomenon like cognitive penetration. We aim to determine if decodability depends on
an individuals capacity for vivid imagination. The distinction between illusory perception
and imagination is quite blurred, and with the pipeline we intend to deőne a boundary
between the two through machine learning classiőcation.

There are cases however, where people have been shown to be łblindž to imagination.

2.1.5 Aphantasia

People can completely lack the experience of visual imagery, a condition now known as
Aphantasia (Keogh, 2018; Zeman, Dewar and Della Sala, 2015). Research is needed to
determine if such a phenomenon is based on poor metacognition; visual images appear in
their mind, but they are unable to observe them. Studies have suggested that aphantasics
self-rated visual object imagery was below average, yet spatial imagery was above (Zeman
et al., 2010). This suggests that aphantasia is a condition involving a lack of sensory and
phenomenal imagery, and not a lack of metacognition or the inability to introspect.

My personal experience with this leads me to believe that I am one such aphantic.
Conversations with my family suggest I am an isolated case, as when questioned they
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are immediately able to describe a speciőc object in detail. For example, when asked to
visualise an apple, they immediately describe its dimensions, color, smell, location etc.
Hypothetically, there is a possibility this is due to the inability to connect imagination
with recall.

2.2 Python MNE

The following example for visualising the statistical signiőcance thresholds in EEG data is
taken from this MNE-Python tutorial. It shows the basics of using EEG data to perform
exploratory and visual analysis using MNE-Python (Gramfort et al., 2013b). Before any
machine learning is performed, EDA techniques such as these will be carried out to ensure
the data we are feeding the models is optimal and what we expect.

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from scipy.stats import ttest_ind

4

5 import mne

6 from mne.channels import find_ch_adjacency, make_1020_channel_selections

7 from mne.stats import spatio_temporal_cluster_test

8

9 np.random.seed(0)

10

11 # Load the data

12 path = mne.datasets.kiloword.data_path() / 'kword_metadata-epo.fif'

13 epochs = mne.read_epochs(path)

14 # These data are quite smooth, so to speed up processing we'll (unsafely!) just

15 # decimate them

16 epochs.decimate(4, verbose='error')

17 name = "NumberOfLetters"

18

19 # Split up the data by the median length in letters via the attached metadata

20 median_value = str(epochs.metadata[name].median())

21 long_words = epochs[name + " > " + median_value]

22 short_words = epochs[name + " < " + median_value]

Listing 2.1: Visualising statistical signiőcance thresholds on EEG data (Part 1).

If we wish to test a speciőc point and time and space, we can convert the data in a Pandas
Dataframe structure. The mne.Epochs class has a method called mne.Epochs.to_data_frame(),
returning the data in a DataFrame structure. This is shown in Listing 2.2.

Next a mass-univariate analysis at all sensors and time points can be explored. This
requires a correction for multiple tests. Here, they use a cluster-based permutation to
allow for the derivation of power from the spatio-temporal correlation structure underlying
in the data (Listing 2.3).

The results of the mass univariate analysis can be easily visualised by plotting mne.Evoked

objects as images using the method mne.Evoked.plot_image(). Shown in Listing 2.4,
channels are grouped by regions of interest to illustrate the localising effects on the head.

https://mne.tools/stable/auto_tutorials/stats-sensor-space/20_erp_stats.html#sphx-glr-auto-tutorials-stats-sensor-space-20-erp-stats-py
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23 time_windows = ((.2, .25), (.35, .45))

24 elecs = ["Fz", "Cz", "Pz"]

25 index = ['condition', 'epoch', 'time']

26

27 # display the EEG data in Pandas format (first 5 rows)

28 print(epochs.to_data_frame(index=index)[elecs].head())

29

30 report = "{elec}, time: {tmin}-{tmax} s; t({df})={t_val:.3f}, p={p:.3f}"

31 print("\nTargeted statistical test results:")

32 for (tmin, tmax) in time_windows:

33 long_df = long_words.copy().crop(tmin, tmax).to_data_frame(index=index)

34 short_df = short_words.copy().crop(tmin, tmax).to_data_frame(index=index)

35 for elec in elecs:

36 # extract data

37 A = long_df[elec].groupby("condition").mean()

38 B = short_df[elec].groupby("condition").mean()

39

40 # conduct t test

41 t, p = ttest_ind(A, B)

42

43 # display results

44 format_dict = dict(elec=elec, tmin=tmin, tmax=tmax,

45 df=len(epochs.events) - 2, t_val=t, p=p)

46 print(report.format(**format_dict))

Listing 2.2: Visualising statistical signiőcance thresholds on EEG data (Part 2).

47 # Calculate adjacency matrix between sensors from their locations

48 adjacency, _ = find_ch_adjacency(epochs.info, "eeg")

49

50 # Extract data: transpose because the cluster test requires channels to be last

51 # In this case, inference is done over items. In the same manner, we could

52 # also conduct the test over, e.g., subjects.

53 X = [long_words.get_data().transpose(0, 2, 1),

54 short_words.get_data().transpose(0, 2, 1)]

55 tfce = dict(start=.4, step=.4) # ideally start and step would be smaller

56

57 # Calculate statistical thresholds

58 t_obs, clusters, cluster_pv, h0 = spatio_temporal_cluster_test(

59 X, tfce, adjacency=adjacency,

60 n_permutations=100) # a more standard number would be 1000+

61 significant_points = cluster_pv.reshape(t_obs.shape).T < .05

62 print(str(significant_points.sum()) + " points selected by TFCE ...")

Listing 2.3: Visualising statistical signiőcance thresholds on EEG data (Part 3).
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63 # We need an evoked object to plot the image to be masked

64 evoked = mne.combine_evoked([long_words.average(), short_words.average()],

65 weights=[1, -1]) # calculate difference wave

66 time_unit = dict(time_unit="s")

67 evoked.plot_joint(title="Long vs. short words", ts_args=time_unit,

68 topomap_args=time_unit) # show difference wave

69

70 # Create ROIs by checking channel labels

71 selections = make_1020_channel_selections(evoked.info, midline="12z")

72

73 # Visualize the results

74 fig, axes = plt.subplots(nrows=3, figsize=(8, 8))

75 axes = {sel: ax for sel, ax in zip(selections, axes.ravel())}

76 evoked.plot_image(axes=axes, group_by=selections, colorbar=False, show=False,

77 mask=significant_points, show_names="all", titles=None,

78 **time_unit)

79 plt.colorbar(axes["Left"].images[-1], ax=list(axes.values()), shrink=.3,

80 label="µV")

81

82 plt.show()

Listing 2.4: Visualising statistical signiőcance thresholds on EEG data (Part 4).
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2.3 Deterministic Machine Learning

Deterministic machine learning is a model, which when given a speciőc input, will have
the same output value. Probabilistic (Section 2.4) machine learning is the converse to this,
in that when a model receives a speciőc input, the output is generated by a probability
distribution and thus will be different upon each iteration of the same input.

Reaves et al. (2021) discovers in his review that the most commonly applied machine
learning algorithms in neuroscience for EEG data are Neural Networks, Random Forests

and Support Vector Machines. A brief overview and description of each of these is covered
here, and I plan to use these for the primary decodability objectives. They will also be
a useful baseline to compare against the probabilistic models, if time permits, for the
secondary objective.

2.3.1 Artificial Neural Networks

Since Rumelhart, Hinton and Williams (1986) developed back-propagation, Neural Net-

works became a popular modelling choice, and by 1995 they began to have competition
from other algorithms. It wasn’t until Santana et al. (2012) released his paper on Deep

Learning that domination began, and to date they have been used as classiőers, value
predictors, auto encoders and reinforcement learning agents. Understanding how the brain
works is still a widely debated topic in neuroscience (Lisman, 2015), and analogies are
often drawn between the two.

Deep learning algorithms make use of different transformations and functions to approximate
a complex pattern in a dataset. A simple Artificial Neural Network (ANN) is the
foundational concept of this approach, the history of which is well reviewed in Schmidhuber
(2015).

ANN’s consist of a linear series of non-linear transformations, alternatively deőned as
feed-forward neural networks. They were conceived to be loosely based on the process of
biological neurons; lots of simple signals combined allow for complex evaluation. Figure 2.1
shows arrows representing linear transformations between nodes (equivalent to a neuron
biologically), which combine to transform four values from the input layer xD to two in
the output layer yK .

A generalised linear model is expressed in terms of a weighted sum of őxed basis functions
ϕm(x). A single layer of a neural network is represented as

y(x) = g

{

M
∑

m=1

wmϕm(x)

}

(2.1)

where g represents a link function. A neural network with two layers of weights w and V

is deőned as

y(x) = g

{

M
∑

m=1

wmϕ

(

D
∑

d=1

vmdxd

)}

(2.2)
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Figure 2.1: A fully connected artiőcial neural network.

which in contrast to Equation 2.1 has adaptive basis functions ϕm, along with the weight
vector w = (w1, . . . , wM) and parameters V . The parameters represent the weights
between the input and hidden layer, thus V is a M ×D matrix. The architecture can
be extended far beyond this representation to more layers, which then becomes a deep
neural network.

A constant input or basis function is then added, referred to as the bias, generally deőned
as an extra hidden unit indexed by zero x0 = 1 and ϕ0(x) = 1.

The basis function in a linear model is called an activation function in a neural network.
This introduces non-linearity and allows the model to őt more complex functions, becoming
a universal function approximator (Hornick, 1989). Hodgkin and Huxley (1952) describes
how neurons in the brain use action potential őring in such a manner, akin to activation
functions.

The most commonly used activation function is the rectified linear unit (ReLU)

ϕ(x) =

{

x, if x > 0 ∀ ϕ ∈ [0,∞]

0, otherwise
(2.3)

,

yet recently swish activation (Ramachandran, Zoph and Le, 2017) has been a contender
to replace it.

Depending on the intent of the output layer (regression or classiőcation), further normalisation
is applied to constrain. For multi-class classiőcation, the most commonly used normalisation
is softmax (Equation 2.4), of which all the elements from the output sum to 1.

σ(y)i =
eyi

∑K

j=1
eyj

for i = 1, . . . , K and y = (y1, . . . , yK) ∈ R
K . (2.4)
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Figure 2.2: An illustration of the smoothing beneőts of the swish activation versus relu
(Ramachandran, Zoph and Le, 2017).

Training

Before any training is performed on a dataset, we split the data into training, validation
and test sets. The model is trained on the training set, and validated on the validation
set at various intervals to monitor the performance of the model. Finally, the test set is
used to perform a őnal evaluation to test the model on unseen data.

Supervised learning is the process where features (data) and labels (target variable) are
supplied to a machine learning model. In the case of a neural network, upon seeing the
training data, it seeks to minimise the loss from the errors between the training set and
the validation set.

Loss

A loss function is generally a test metric between the true value of the label y, compared
with the predicted value ŷ of the label. Commonly used loss functions for regression
models for example use the mean squared error

L(y, ŷ) =
1

N

N
∑

i=0

(y − ŷ2). (2.5)

For classiőcation tasks, categorical cross entropy is used

L(y, i) = − log(σ(y)i) (2.6)

= − log

(

eyi
∑K

j=1
eyj

)

.

Optimisation

If we consider each of the weights and biases of the model as a dimension in an
n-dimensional space we can use numerical methods to őnd a combination of these which
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minimises the loss and allows the model to converge to a point θ ∈ R
n which meets the

initial intent.

Gradient Descent is the foundational approach used for this, and is of the form

θk+1 = θk − ϵ∇θk
L(f(x,θk),y), (2.7)

where the loss function L is to be minimised, x represents the features and y represents
the labels, θk are the weights and biases at epoch k, and ϵ is the learning rate. The
learning rate ϵ is a hyper-parameter, which means something that the user has to optimise
and is not automatically learned or optimised by the model. The gradient of the function
space ∇θF (θ) is calculated via back propagation of the errors algorithm introduced by
Rumelhart, Hinton and Williams (1986).

Stochastic Gradient Descent, the theory of which was founded by Robbins and Monro
(1952) descends along the function in the parameter space taking note of the negative
of its gradient. An additional parameter of momentum allows further adjustment to the
learning rate ϵ.

AdaGrad (Duchi, 2011) scales the learning rates of each parameter dimension individually
(ζ ∈ R

n)

ζi =
ϵ

δ +
√
ri
, (2.8)

where δ is a stabilising constant included for numerical stability, and ri is the cumulative
square of the gradients for the parameter θi. This accelerates the learning rate ϵ for
shallow gradients, and decelerates for steep gradients.

Adam (Kingma and Ba, 2015) adopts the policy of exponential decay rates. A decaying
gradient history is used to estimate the őrst and second order momentum terms which is
then used to update the parameters (weights and biases).

Regularisation

Over-fitting is when a model minimises the training loss to such extent that it effectively
memorises the training data, leading to a poorly performing model on unseen data. Under-

fitting is the converse of this. We aim to have a model which is generalized to have similar
performance between the training and test sets.

Commonly used methods of combat this issue in neural networks are batch normalisation,
dropout, early stopping and data augmentation.

Batch Normalisation (Ioffe and Szegedy, 2015) is a transformation usually applied after
the activation function, though there appears to be no consensus on whether it should be
applied before or after. The transformation is of the form

xi = γx̂i + β (2.9)

where γ and β are learnable parameters which normalise the batched input x̂i to xi. This
improves the generalisation capabilities of the model. Future inputs are normalised in the
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same manner, and creates a situation where we are more likely to produce feature maps
that the model is able to classify correctly.

Dropout (Srivastava and Hinton, 2014) layers are usually added at the end of a Convolu-

tional Neural Network through each block of fully connected layers. This transformation
randomly selects the outputs of its current iteration or epoch, and sets them to 0. The
probability with which this transformation is applied can be set, and by training with less
information we reduce the co-dependence of model outputs on individual features.

Early Stopping is where we take subset of the training set and withhold it for validation,
and throughout the training process the model performance can be tracked and validated
each epoch. We can then choose to stop the training early based upon whether the
validation step sees improvement.

Data Augmentation (Shorten and Khoshgoftaar, 2019) is a process by which the input is
perturbed and transformed such that each epoch trains on slightly different data. This
further reduces the models ability to memorise the training set, reducing over-őtting.

Transfer Learning

A model previously trained can be reused as a starting point for a new model, even if it
was trained for a different task. This transfer of knowledge from a pre-trained model can
speed up training times for the new model, and give better generalised accuracy.

2.3.2 Convolutional Neural Networks

Convolutional Neural Networks are widely adopted in computer vision tasks, such as
images or videos. The inspiration for CNNs was perhaps conceived by Wiesel (1968),
where they researched the striate cortex of monkeys. Goodfellow, Bengio and Courville
(2016) state in Chapter 9.10 that

łTheir great discovery was that neurons in the early visual system responded
most strongly to very speciőc pattern of light, such as precisely oriented bars,
but responded hardly at all to other patterns.ž

LeCun and Boser (1989) extended this to computer vision, which aimed at classifying
hand written zip codes, now known as the MNIST dataset.

CNNs are chosen over ANNs for image tasks because of reduced computational complexity.
Convolution generally precedes Batch Normalisation and ReLU, often followed by a
Pooling function. The operation of convolution is performed via

s(t) =

∫

p(a)k(t− a)da (2.10)

= (p ∗ k)(t)

where ∗ denotes convolution, input p, output s, and k as the kernel.

Equation 2.10 in discrete form becomes
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S(i, j) = (I ∗K)(i, j) =
∑

m

∑

n

I(i+m, j + n)K(m,n). (2.11)

The feature map is generated by scanning the input map across the kernel.

Hartmann, Schirrmeister and Ball (2018) suggests that CNNs might help to better
understand the compositional structure of EEG time series data. A joint model is also
shown by Dupre La Tour et al. (2021) to increase prediction accuracy, which leads to őner
mappings from CNN layers to the visual cortex.

2.3.3 Random Forests

Random Forests (Ho, 1995) are an ensemble learning algorithm, which constructs many
Decision Trees at training time. The classiőcation version selects the output class most
commonly returned by each tree, and regression takes the mean prediction of all individual
trees.

Figure 2.3: A random forest where bootstrapped samples are voted into a őnal class.

The technique for random forests uses bootstrap aggregating (bagging). For a dataset
X = x0, . . . , xn with output Y = y0, . . . , yn bagging B times we select a random sample
with replacement of the training set and őt decision trees to the sample. The procedure is
then:

• For b = 1, . . . , B:
– Sample, with replacement, n training examples for Xb, Yb.
– Train a tree fb on Xb, Yb

Predictions can then be made on the test set by averaging the predictions from all
individual regression trees.

f̂ =
1

B

B
∑

b=1

fb(x
′) (2.12)

Bootstrapping in this way leads to better model performance as it decreases the variance
of the model.
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2.3.4 Support Vector Machines

Support Vector Machines (Boser, Guyon and Vapnik, 1992) construct a maximised
hyperplane which can be used to classify data into separate classes. For linear SVMs, if
we are given a dataset of n points consisting of (x0, y0), . . . , (xn, yn) where the y ∈ (−1, 1)
we can write the hyperplane as a set of points x

wTx− b = 0, (2.13)

where w is the normal vector to the hyperplane.

Figure 2.4: Maximum-margin hyperplane and margins for an SVM trained with
samples from two classes. Samples on the margin are called the support vectors.



CHAPTER 2. LITERATURE AND TECHNOLOGY SURVEY 23

2.4 Probabilistic Machine Learning

As stated previously, we deőne probabilistic (or stochastic) machine learning to be the
converse of deterministic models, in that when a model receives a speciőc input, the
output is generated by a probability distribution and thus will be different upon each
iteration of input and output. Outside of Neural Networks, there are many stochastic
approaches available such as Gaussian Processes and various sampling methods available
in packages such as bambi (Capretto et al., 2020).

Bayesian approaches such as these in the őeld of neuroscience are thus far quite sporadic
(Bielza and Larrañaga, 2014). Song, Kolar and Xing (2009) measured the interactions
between regions of the brain and recorded the responses to visual stimuli, who imagined
moving a body part based on visual cues. His approach was to use a time-varying dynamic
bayesian network.

2.4.1 Bayesian Neural Networks

Research into Bayesian Neural Networks dates back to the early 90s (Yamins et al., 2014).
This variant of neural networks can be treated probabilistically by maximising likelihood
rather than minimising the error.

Figure 2.5: A Bayesian neural network with two layers of weights. The input has D
dimensions, M hidden units and K outputs. The hyperparameters αv and αw correspond

to the input hidden weights V and output weights w.

Likelihood

Typically there is a corresponding pairing of error function and likelihood between
deterministic and probabilistic models:

• Regression: Squared error ⇐⇒ Gaussian likelihood with linear link function
(activation).

• Classiőcation: Cross-entropy ⇐⇒ Bernoulli likelihood with sigmoid activation.

In general to switch between the two approaches the error ≡ negative-log-likelihood. To
specify the priors of the parameters and compute the posterior distribution we follow
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p(w,V |D) =
p(D|w,V )p(w,V )

p(D)
(2.14)

Weight Priors

The priors over each layer should be independent

p(w,V ) = p(w)p(V ). (2.15)

Usually, the priors will be Gaussian with hyperparameterisation in terms of alpha α.

Output layer: p(w|αw) =
(αw

2π

)

M
2

M
∏

m=1

exp
{

−αw

2
w2

m

}

(2.16)

Hidden layer: p(V |αv) =
(αv

2π

)

MD
2

D
∏

d=1

M
∏

m=1

exp
{

−αv

2
v2md

}

(2.17)

Automatic Relevance Determination

Automatic Relevance Determination (MacKay, 1994) is exclusive to the Bayesian framework,
with no non-Bayesian equivalent. I chose to highlight this approach as it allows us to
determine which inputs are informative for the purposes of making predictions. It is
implemented by making a speciőc choice of prior: one which assigns an individual
hyperparameter to the group of weights emerging from each input xd.

In contrast to Equation 2.17, the ARD prior has D separate hyperparameters, one
associated with each input

p(V |αv1, . . . , αvD) =
D
∏

d=1

(αvd

2π

)

M
2

M
∏

m=1

exp
{

−αvd

2
v2md

}

. (2.18)

Figure 2.6: A Bayesian neural network with two layers with an ARD prior. There are
D individual hyperparameters αv1, . . . , αvD each corresponding to an input xd. The

output layer is the same as before.
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2.5 Classification Metrics

In a binary classiőcation model, there are two classes to classify. Predictions made from
a model with this metric will either be true or false, along with positive and negative.
These are generally denoted as TP, FP, TN, FN. For clariőcation, below is the detailed
deőnition of each predication.

• True Positive: correctly classiőes the positive class.
• True Negative: correctly classiőes the negative class.
• False Positive: incorrectly classiőes the positive class.
• False Negative: incorrectly classiőes the negative class.

Confusion Matrix

A confusion matrix in the best case scenario lists all values within the trace, containing
all the TP and TN. This idea can be extended to a multi-class problem, but can be more
difficult to interpret.

[

TP FP

FN TN

]

(2.19)

Metrics

Accuracy is a metric which illustrates how close or far a set of measurements are to their
true value. Precision tells you how dispersed those measurements are. Recall tells you the
dispersion of the measurements to their false value. The following metrics in multi-class
scenarios are calculated in the same way as one vs rest. The F1 score is the harmonic
mean of the precision and recall.

Accuracy =
TP + TN

TP + TN + FP + FN
(2.20)

Precision =
TP

TP + FP
(2.21)

Recall =
TP

TP + FN
(2.22)

FScore = 2 · Precision · Recall
Precision + Recall

(2.23)
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2.6 Further Reading/Considerations

Bishop (2006) is an excellent resource for both supervised and unsupervised machine
learning. For further insight into Bayesian approaches, Mackay (2003) provides his entire
taught course notes in textbook form. Section 41 in particular provides the necessary
background for all the above proposed inference methods. A Variational Auto Encoder

(Kingma and Welling, 2013) may prove to be a useful stochastic approach, originally
conceived for unlabelled data, but has seen success in supervised learning as well. Bowles
(2020) gives a fantastic review of Neural Networks if more detail is needed in this area,
speciőcally attention gating layers.

A review on EEG analysis and the pipeline methods used can be found in Reaves et al.
(2021). He found that the most commonly used algorithms used were Neural Networks,

Support Vector Machines and Random Forests. Most notably, he states that Transfer

Learning is predicted to be an important analysis method for future research.

Cavedon-Taylor (2021) gives insight on the existence of cognitive penetration and the
conceptual link between imagination and perception. Dijkstra, Bosch and van Gerven
(2017) suggests that łThe more the neural response during imagery is similar to the neural
response during perception, the more vivid or perception-like the imagery experience isž
(Figure 2.7). Dreams have also been hypothesised to be imaginative states; Siclari et al.
(2017) used EEG recordings to report on user dream states upon awakening, shown in
Figure 2.8.

Figure 2.7: Perception and imagery versus baseline. Blue-green represents t values for
perception versus baseline. Red-yellow represents t values for imagery versus baseline

(Dijkstra, Bosch and van Gerven, 2017).

Figure 2.8: Sagittal MRI scans of the human brain can be used to detect changes in
brain activity to offer clues as to what a person is dreaming (Siclari et al., 2017).



Chapter 3

Requirements

Project Plan

To meet this projects objectives an outline is proposed in Appendix A.1. The highest
priority lies in the construction of the pipeline to process and decode the EEG data at
hand. I expect this stage, which requires experimentation, to take up the majority of
the time. Most notably the pre-processing stage to remove artifacts is very much trial
and error. Due to the Bath dataset being an untested set, I will also aim to establish a
baseline on well benchmarked data during the design phase.

Data Collection

Our dataset aims to answer the following questions:

• Is there an overall variance depending on how vividly an individual imagines?
• Which neural signals (regions and timepoints) enable us to classify invariant of their

vividness, such as regions related to semantics.

The dataset is to be collected at the University of Bath, involving 20+ participants neural
data, collected from 128 EEG channels using ANT-Neuro hardware and a 10:20 montage1.
Auditory and visual imagery vividness will be collected separately.

Python Packages

There have been many python packages released recently which have made prototyping
and analysis in machine learning accessible. Some of the ones I intend to use are:

• Pandas (Wes McKinney, 2010) provides fast, ŕexible, and expressive data structures
designed to make working with tabular data more intuitive.

• Numpy (Harris et al., 2020) is a core scientiőc package in python, useful for efficient
matrix and vector operations.

• Matplotlib (Hunter, 2007) is a cross-platform, data visualization and graphical
plotting library for Python and its numerical extension NumPy.

1The 10:20 montage refers to the 10% or 20% inter-electrode distance (Fig 1.2)
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• Seaborn (Waskom, 2021) is a Python data visualization library based on matplotlib.
It provides a high-level interface for drawing attractive and informative statistical
graphics.

• Sklearn (Pedregosa et al., 2011) provides an accessible way to prototype machine
learning algorithms and a high level API to quickly provide analysis.

• Pytorch (Paszke et al., 2019) is primarily made for deep learning tasks, capable of
accelerating tensor operations on cuda cores.

• Pytorch Lightning (Falcon et al., 2019) is an extension to Pytorch which allows
for a more streamlined approach to prototyping neural networks.

• Tensorflow (Abadi et al., 2015) is a deep learning library similar to Pytorch.
• Bambi (Capretto et al., 2020) is a high-level Bayesian model-building interface

written in Python. It works with the probabilistic programming frameworks PyMC3
and is designed to make it extremely easy to őt Bayesian mixed-effects models
common in biology, social sciences and other disciplines.

• Python MNE (Gramfort et al., 2013a; Li et al., 2022) is a tool for use in neuroscience
analysis with a high level sklearn like interface.

• EEGLab (Delorme and Makeig, 2004) is an open source toolbox for analysis of
single-trial EEG dynamics including independent component analysis.

• Autoreject (Jas et al., 2016) is is a library to automatically reject bad trials and
repair bad sensors in magneto/electroencephalography (M/EEG) data.

• Pyriemann (Barachant and King, 2015) is a machine learning library based on
scikit-learn API. It provides a high-level interface for classiőcation and manipulation
of multivariate signal through Riemannian Geometry of covariance matrices.

• IC-Label (Pion-Tonachini, Kreutz-Delgado and Makeig, 2019) is an automated
procedure to classify IC using a trained neural network on thousands of IC’s.

Computing

In the design phase, I will mostly be able to prototype and implement the models on my
home computing devices. In the testing stage, the Hex Cluster (Bath, 2022) will prove to
be a useful tool, in allowing access to more powerful machines to train machine learning
models on GPUs.

Reproduction

All of the code required to perform the experiments described in later chapters are located
here.

https://github.com/sourestdeeds/imagination-vs-perception
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Design

4.1 Datasets

Imagination and Perception

The imagination and perception dataset was created at the University of Bath, and
collected by Holly Wilson, Jinha Yoon, Becky Dakin and Aneekha Bal. They used a
128 channel gel-based ANT-Neuro headset, which recorded at 1024 Hz. The amount of
trials undertaken by participants varied as a function of their fatigue. Many participants
requested to őnish before completing the full experiment. Additionally, though all
participants were requested to complete three sessions, the majority of participants
completed 1-2 sessions. A baseline recording was taken during the 10 second countdown
to the őrst trial, after the participant presses a space bar to begin the experiment. Breaks
occurred roughly every 7 minutes. The three semantic categories used are Penguin, Guitar

and Flower. The three sensory modalities include pictorial (visual), orthographic (visual)
and speech (audio). The two tasks include perception and imagination, of which there are
roughly 40 trials for each of the 18 conditions.

It is suggested that imagination and perception tasks are manifested in the α band (Xie,
Kaiser and Cichy, 2020), thus a safe band to investigate for decoding in the cleaning stage
is 7− 35Hz.

AudViz

For testing purposes I plan to assess model performance using the sample dataset AudViz

from mne. I chose this dataset as the events consist of auditory and visual stimuli, which
possibly contain similar eeg signals related to our imagination and perception dataset.
Performing analysis with this dataset, and creating plots to compare through various
stages will allow a basis of comparison to understand failures and successes with our
dataset. Figure 4.2 shows the extracted epochs, illustrating what we possibly expect to
see at this stage.
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Figure 4.1: The timings of the different event modalities for the imagination and
perception dataset.

4.2 Exploratory Data Analysis

Plotting the data in its raw form is the őrst step of any analysis, to ensure it is what we
expect before proceeding. This also helps us to visually inspect for artifacts. A Power

Spectral Density plot is shown in Figure 4.3 which can be interpreted as a histogram for
frequency information. We can see that harmonic power line noise occurs roughly every
50Hz, which will need to be őltered out. The process for this this is further discussed in
Section 4.3.

4.2.1 Montage

To visualise the layout of the electrodes, we can apply the montage to the raw data. The
ANT-Neuro montage in our dataset has compatibility issues with Python MNE, yet we
have found a temporary workaround which will likely be improved later on. Currently the
rough montage mapping is demonstrated in Figure 4.4. The montage is in a 10:20 format
and the reference is CPz.
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Figure 4.2: The extracted epochs from the AudViz dataset.

Figure 4.3: The power spectral density is similar to a histogram for frequency
information. The spike ≈ 50− 60Hz is likely due to AC powerline artifacts. Negative
values on the dB scale suggest that the power is less than the reference power. Higher

values indicate a more powerful signal.



CHAPTER 4. DESIGN 32

Figure 4.4: The approximate ANT-Neuro, 10:20 montage mapping.
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4.3 Pre-Processing

The most important stage in the pipeline is the preprocessing stage. We wish to remove
as many unwanted artifacts as possible to leave us with a clean signal to make the best
classiőcation possible. Often, the őrst step is to downsample the data to make the following
computations faster, via raw.resample(128), which downsamples the data to 128Hz.

4.3.1 Artifact Detection, Removal and Repair

Artifacts are unwanted persistent signals which are associated with noise, which detract
from the signal of interest. This interference can be caused by:

• Environment

– Persistent oscillations centered around the AC power line, which have a
frequency range of ≈ 50− 60Hz.

– Inconsistent signal jumps due to environmental vibration, like footsteps or
doors closing.

– Electromagnetic őeld noise from cell phones, earths magnetic őeld.
• Instrumentation

– Electromagnetic interference from other electronic equipment such as unshielded
headphones.

– Sensor malfunctions like poor scalp contact which cause random high-amplitude
ŕuctuations, or a constant zero signal.

• Biological

– Periodic signals from electrical activity of the heart.
– Short and large step-like deŕections caused by eye movements and blinking.
– Bursts of high frequency ŕuctuations across multiple channels from muscular

activity.

Options for dealing with artifacts in EEG data include:

• Ignoring the artifacts entirely.
• Excluding the corrupted parts.
• Repairing the artifacts by suppressing the corrupted parts while maintaining the

signal of interest.

Artifact repair methods are quite varied, some of which include digital őltering, independent
component analysis and signal-space separation/projection. Generally this kind of
reconstruction occurs before epoching, though it can also be performed after this step.
Makoto suggests that there are beneőts to channel repair after epoching, due to the
discarding of irrelevant data in this step.

If channel signals appear completely ŕat, it could be that the electrode was broken, or the
impedance strength was insufficient to record a signal. Missing data can be őlled in with
interpolation. Variance in signal noise between channels is also problematic, and these can
either be removed or have Independent Component Analysis performed to repair them.

Our large cap has a broken channel (CCP1h), thus this will always be omitted in analysis.
The artifacts driven by eye muscles are visualised in Figure 4.5. We select a few channels
close to the eyes (FP1 and FP2) to then estimate eog activity. With the knowledge of
their structure, we can then choose to remove these later in the ICA analysis.

https://sccn.ucsd.edu/wiki/Makoto's_preprocessing_pipeline
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Figure 4.5: The visual artifacts driven by eye muscles.

To remove the power-line noise (≈ 50 − 60Hz) we can apply Notch Filtering to the
raw object raw.notch_filter([50,100,150], picks='eeg', phase='zero-double'), which
removes the low-frequency drifts. Such noise is possible to be present at harmonic
frequencies, thus we also remove 50, 100, 150Hz. Movements of the head, wires and scalp
perspiration are all contributing factors to this type of artifact. High frequency noise
is related to face and neck muscles, as well as electromagnetic interference. After the
removal, for participant 8, session 2, the Power Spectrum Density is shown in Figure 4.6,
complete with montage color mapping.

Low-pass and high-pass őltering allow noise above and below a speciőed frequency to
remain in the data. The command in MNE for this is raw.filter(1, 100, method='iir').
for example.

Figure 4.6: The Power Spectrum Density with the notch őlter applied.

Another step used is Independent Component Analysis, which unmixes separate channels
of data. Such a procedure can be performed on őltered, raw or epoched data. ICA is
quite sensitive to low-frequency drifts, thus a high pass őlter should be applied before
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őtting. On epoched data, the baseline should not be corrected before using ICA. The
Picard (Ablin, Cardoso and Gramfort, 2018) version is deemed to be faster and more
robust for this process.

To deal with noisy channels we can either remove them from analysis, or interpolate them.
In general, channels that should be rejected are noisy throughout the temporal range. If
a channel is only noisy periodically, this generally effects all channels simultaneously, and
brief periods such as these can be rejected at the Epoching step.

Epoching is the process by which the data is epoched based on the trials different stages.
This is done to achieve discrete time periods at which point event X was happening and
thus the cognitive process Y should reŕect this in the data. We wish to narrow the analysis
to these time periods in each trial.

Accurate timings between events and recording software is very important here, and in our
study, participant 15, session 1 had synchronisation issues which made the data unusable
in analysis.

4.3.2 Automated Pre-Processing

To remove line noise, a notch őlter is generally applied in cyclic frequencies of 50Hz, but we
can also use a Spectrum Fit to automatically detect periodic components. This is achieved
via raw.notch_filter(freqs=None, method='spectrum_fit'). We can then select a target
range for our study, for example the α and β range by őltering with raw.filter(7, 35).

After the data has been Epoched, we can apply the python implementation of Ransac,
Ransac(), similar to the one in the PREP Pipeline, and AutoReject() (Jas et al., 2016),
shown in Figure 4.7. Ransac rejects bad channels, and Autoreject rejects bad epochs.

The őnal step is Independent Component Analysis followed by IC-Label (Pion-Tonachini,
Kreutz-Delgado and Makeig, 2019), using the mne-python implementation. IC-Label

is an automated procedure to classify independent components using a trained neural
network on thousands of crowd sourced IC’s.

Figure 4.7: The automated algorithm used to automatically reject bad epochs (Jas
et al., 2016).

The steps suggested follow the procedure demonstrated in Appendix C.

http://vislab.github.io/EEG-Clean-Tools/
https://github.com/mne-tools/mne-icalabel
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4.3.3 Feature Extraction

This stage typically involves supervised techniques which aim to extract patterns based
upon the training data, using the features x and labels y. It is important to ensure
that only the training set is őt, such as a StandardScaler(), by which we then use the
mean and standard deviation to transform both the training and test sets with the same
information. If we őt and transform the entire dataset this would result in data leakage,
as information about the test set would contaminate the training set.

Examples of feature extraction methods for EEG pipelines include:

• xDAWN (Rivet* et al., 2009): A supervised spatial őltering method which maximises
the signal to noise ratio of event-related potentials, and is generally effective in
classiőcation studies.

• Riemannian Geometry (Barachant et al., 2012): A technique to map covariance
matrices to tangent space which converts euclidean vectors while conserving the
inner structure of the manifold.

4.4 Machine Learning

4.4.1 Deterministic Classifiers

Neural Network

I based my Neural Network, shown in Appendix C, on EEGNet (Lawhern et al., 2016),
which is a compact convolutional net designed to be used with EEG signals. A modiőcation
to this approach is suggested by Huang et al. (2020), called S-EEGNet, which adds bilinear
interpolation to improve classiőcation accuracy further. Another variant of the EEGNet

architecture is TSGL-EEGNet (Deng et al., 2021) which aims to improve upon EEGNet by
using Temporary Constrained Sparse Group Lasso (TCSGL) to enhance its performance.

Other Models

From my review, I found that the most popular non network models used were Random

Forests, Support Vector Machines and Logistic Regression. As I adapted my neural
network to use a wrapper for use with the Sklearn pipeline (Appendix C), I can test these
approaches in a very similar fashion. The pipeline for these follow an xDAWN denoising
and a projection into Riemann tangent space.

pipe = Pipeline([

('xDawnCov', XdawnCovariances(nfilter=2)),

('TangentSpace', TangentSpace()),

])

Proof of Concept

As a proof of concept I used the sample dataset AudViz from mne using the following
code.

from mne.datasets import sample

import mne

# Read epochs

https://mne.tools/dev/overview/datasets_index.html
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Name Contents

LA Response to left-ear auditory stimulus
RA Response to right-ear auditory stimulus
LV Response to left visual őeld stimulus
RV Response to right visual őeld stimulus

Table 4.1: The event labels for the AudViz Dataset.

data_path = sample.data_path()

# Set parameters and read data

raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif'

event_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw-eve.fif'

tmin, tmax = -0., 1

event_id = dict(aud_l=1, aud_r=2, vis_l=3, vis_r=4)

# Setup for reading the raw data

raw = mne.io.Raw(raw_fname, preload=True, verbose=False)

# Replace baselining with high-pass

raw.filter(2, None, method='iir')

events = mne.read_events(event_fname)

# Set bad channels

raw.info['bads'] = ['MEG 2443']

picks = mne.pick_types(

raw.info, meg=False, eeg=True, stim=False, eog=False, exclude='bads'

)

# Read epochs

epochs = mne.Epochs(

raw, events, event_id, tmin, tmax, proj=False,

picks=picks, baseline=None, preload=True, verbose=False

)

The mne documentation for AudViz states:

łIn this experiment, checkerboard patterns were presented to the subject
into the left and right visual őeld, interspersed by tones to the left or right
ear.ž

Event labels for this sample are shown in Table 4.1 and the results generated will act
as a baseline of comparison for the future analysis with our dataset, and to ensure the
models are functioning as required. The models used were Random Forest, Support Vector

Machine, Logistic Regression, Gaussian Process, Linear Discriminant Analysis, EEGNet

and TSGL-EEGNet. The non network classiőer confusion matrices are shown in Figure
4.8, and the network versions are displayed in Figure 4.9.

To assess model performance, 100 independent trials were taken to assess the accuracy,
all of which underwent 3 cross-fold validation. The results are displayed in Table 4.2.
The best results, on average, were observed to be using Logistic Regression. Performance
for the standard models could be improved further by adjusting the hyperparameters,
as these were just left at the default settings in sklearn. The neural network used the
following hyperparameters

pipe = Pipeline([

('xDawn', Xdawn(nfilter=4)),



CHAPTER 4. DESIGN 38

('scale', Scaler(scalings='mean')),

('reshape', Reshape())

])

param_grid = {

'clf__epochs':[250],

'clf__batch_size':[16],

'clf__kern_length':[32],

'clf__F1':[8],

'clf__F2':[16],

'clf__D':[2],

}

which includes the xDAWN feature extraction pipeline. There were trials where the neural
network had perfect accuracy, which suggests a possible overőtting to a single participant.
Regularization methods such as data augmentation or increasing dropout could help here.
The overall difficulty in classiőcation for this particular dataset is fairly easy for a machine
learning model to decode due to the lateralization of the neural response for the visual
and auditory tasks.

Model Mean Min Max

Random Forest 0.833 0.708 0.931
Support Vector Machine 0.891 0.806 0.972
Logistic Regression 0.897 0.819 0.958
Gaussian Process 0.876 0.792 0.958
Stochastic Gradient Descent 0.870 0.778 0.972
Linear Discriminant Analysis 0.800 0.667 0.889
EEGNet 0.960 0.889 1.000
TSGL-EEGNet 0.969 0.847 1.000

Table 4.2: The model prototype accuracy tested on the AudViz Dataset, with 100 trials
and 3 fold cross validation at the training stage, evaluated on a hold out test set. The
feature extraction involves the xDAWN and Riemann Geometry pipeline. Without this
stage, average accuracy was ≈ 63%. The mean, minimum and maximum accuracy is

shown for each model, suggesting that the best performing standard model on average for
this particular eeg dataset is Logistic Regression. The neural networks show improved
average performance, however the computation time for 100 trials takes ≈ 2 hours to

perform, compared to ≈ 15 minutes for the others.
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(a) Random Forest (b) Support Vector Machine (c) Logistic Regression

Figure 4.8: The confusion matrices for Random Forest, Support Vector Machine, and
Logistic Regression, applied to the mne sample dataset AudViz, pre-processed with the

xDAWN and Riemann Geometry pipeline.

(a) EEGNet (b) TSGL-EEGNet

(c) History for EEGNet (d) History for TSGL-EEGNet

Figure 4.9: The confusion matrices and history for EEGNet and TSGL-EEGNet,
applied to the mne sample dataset AudViz. Subplot 5.4e shows an improved convergence,

thus this does indicate the modiőcations perfom as expected.
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4.4.2 Stochastic Classifiers

Implementations of Gaussian Process, Stochastic Gradient Descent and Linear Discrimi-

nant Analysis from sklearn offer a stochastic approach of classiőcation.

(a) Gaussian Process

Analysis

(b) Stochastic Gradient

Descent

(c) Linear Discriminant

Analysis

Figure 4.10: The confusion matrices for Gaussian Process, Stochastic Gradient Descent

and Linear Discriminant Analysis, applied to the mne sample dataset AudViz, with the
feature extraction of the xDAWN and Riemann Geometry pipeline.
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Implementation and Testing

The pipeline consists of three core steps:

• Pre-Processing (Section 5.1)
• Feature Extraction (Section 5.2)
• Decoding (Section 5.3)

The pre-processing stage aims to clean the raw data such that we can preserve the signal
of interest relating to the event related potentials. Feature extraction aims to boost
the cleaned data through methods like Common Spatial Patterns or xDAWN, alongside
transformations like projecting into Riemann space. Decoding takes this transformed
data and seeks to minimise a loss function, calculated by comparing the predictions versus
the true labels. Decoding in this way is generally referred to as Machine Learning.

The preprocessing stage was performed in both eeglab and mne. The interactivity using
the graphical user interface in eeglab allows for quick inspection of each cleaning step.
The same can be achieved in mne, and steps for both are outlined in Section 5.1.

The code for the feature extraction and decoding stage is shown in Appendix C.

5.1 Pre-Processing

5.1.1 Using eeglab

Makoto’s preprocessing pipeline provides a generalised insight into best practices for
cleaning EEG data. Before feature extraction, I performed these steps in eeglab:

• Downsample to 128Hz.
• Filter to a band of 1− 40Hz.
• Run Automatic Signal Rejection.
• Re-reference to the average.
• Inspect the spectra plots shown in Figure 5.1 and drop channels to follow the cleaned

distribution shown in Figure 5.1b.
• Inspect the Event Related Potential plots.
• ICA/ICA-Label (Figure 5.3), reject components like channel noise and eye blinks.
• Epoching, reject bad epochs on inspection.
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(a) Noisy channel spectra. (b) Cleaned channel spectra.

Figure 5.1: Channel spectra and topographical maps. Each coloured line represents a
single channels spectral activity.

Figure 5.2: ICA component 5, suggesting a high probability of brain activity from
ICA-Label.

5.1.2 Using mne

The goal for the mne pipeline was to achieve a level of automation in pre-processing. The
following steps were taken during the artifact removal process.

• Bandpass őlter in the α and β range using raw.filter(7, 35).
• Epoching, reject bad epochs and channels using Ransac and Autoreject and decimate

(downsample) to 128Hz.
• Re-reference to the average.
• ICA/ICA-Label (Figure 5.3), reject classiőed components like channel noise and eye

blinks. Selecting components labelled as brain or other give the best results.

The notch őlter can be used to clean line noise from the signal if target frequencies under
investigation fall within the 50Hz range. It should be noted that the suggested lowpass
őlter to be applied before decimation is a third of the sample rate to avoid aliasing.
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Figure 5.3: The probability distributions suggesting possible signal sources using
ICA-Label. We aim to have cleaned data prior to őtting ICA such that we maximise the

brain signal components discovered.

# Notch Filter

raw.notch_filter(freqs=None, method='spectrum_fit').

This method in particular is an automated solution which őnds the most signiőcant spikes
channel by channel and applies a notched window to each frequency artifact found.

Re-referencing the data to the average with

# Re-Reference

raw.set_eeg_reference(ref_channels='average')

is best used when the electrode montage covers the whole head. Alternatively, our reference
channel ['Cpz'] could be used for this purpose. Upon testing, both gave similar results
after ICA decomposition.

In MNE, epoching is performed via

# Epoching

events, event_ids = mne.events_from_annotations(

raw, verbose = False

)

epochs = mne.Epochs(

raw=raw,

events=events,

event_id=event_ids,

preload=True,
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tmin=0,

tmax=4,

baseline=None,

event_repeated='merge',

decim=8

)

where the events are the objects perceived or imagined through each modality in our trial.
Slicing around these events occurs in the range t ∈ [0, 4].

Autoreject (Jas et al., 2016) is an automated rejection algorithm designed for use after
epoching to infer bad trials and attempt to repair them. A good explanation of the
algorithm can be found here.

# Autoreject

ar = AutoReject(n_jobs=6)

epochs = ar.fit_transform(epochs)

Ransac from the PREP pipeline (Bigdely-Shamlo et al., 2015) is another automated
rejection algorithm infer bad channels and attempt to repair/remove them. A good
explanation of the algorithm can be found here.

# Ransac

rs = Ransac(n_jobs=6)

epochs = rs.fit_transform(epochs)

I used the extended version of Picard in mne after extracting the epochs, followed by the
IC-Label plugin.

# ICA

ica_epoch_filt = epochs.copy().filter(l_freq=1., h_freq=None)

ica = mne.preprocessing.ICA(

n_components=122, method='picard', fit_params=dict(extended=True)

)

ica.fit(ica_epoch_filt)

# ICA Labels

ic_labels = label_components(raw, ica, method='iclabel')

labels = ic_labels["labels"]

exclude_idx = [idx for idx, label in enumerate(labels)

if label not in ["brain", "other"]]

print(f"Excluding these ICA components: {exclude_idx}")

# Apply ICA

ica.apply(epochs, exclude=exclude_idx)

To interactively inspect the epochs object its possible

# Blocks code execution until popup plot is closed

%matplotlib qt

imagine_orthographic_epochs.plot(block=True)

to halt the further execution of code until the plot is closed. Figure 5.4c shows an example
of this process, where we can mark channels and epochs for rejection. After selection,
and upon closing the plot the parts marked for rejection are applied to the object and
displayed in the output

Dropped 7 epochs: 4, 20, 22, 25, 32, 40, 44

The following epochs were marked as bad and are dropped:

[22, 136, 142, 168, 194, 250, 286]

https://autoreject.github.io/stable/explanation.html
https://autoreject.github.io/stable/explanation.html
https://github.com/mne-tools/mne-icalabel


CHAPTER 5. IMPLEMENTATION AND TESTING 45

Channels marked as bad:

['O1', 'O2', 'P8', 'I1', 'Iz', 'I2', 'POO10h', 'OI1h', 'OI2h'].

(a) Epochs sampled at
1080Hz.

(b) Epochs sampled at
128Hz.

(c) Epoch rejection at
128Hz.

(d) The Power Spectral Density for 1080Hz.

(e) The Power Spectral Density for 128Hz.

Figure 5.4: Our data was recorded at a sample rate of 1080Hz, and Figure 5.4b shows
that we can reduce our samples by 5x and preserve similar spatial patterns. Such

downsampling is beneőcial for the feature extraction and decoding stage, as there is less
data to compute. Figure 5.4c illustrates the interactive epoch and channel rejection

process, to manually inspect and clean the data by eye.
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5.2 Feature Extraction

The őrst implementation I considered for feature extraction was the xDAWN and Rieman-

nian Geometry which projects the Euclidian vectors into tangent space. For the sklearn

pipeline I used the implemented classes from the pyriemann (Barachant and King, 2015)
package

from pyriemann.estimation import XdawnCovariances

from pyriemann.tangentspace import TangentSpace

pipe = Pipeline([

('xDawnCov', XdawnCovariances()),

('TangentSpace', TangentSpace()),

('Scale', StandardScaler()),

]),

which ensures the training data only has access to the labels to avoid data leakage.
The neural network only implements the xDAWN feature extraction with the following
hyperparameters

from pyriemann.spatialfilters import Xdawn

pipe = Pipeline([

('xDawn', Xdawn(nfilter=4)),

('scale', Scaler(scalings='mean')),

('reshape', Reshape())

])

param_grid = {

'clf__epochs':[500],

'clf__batch_size':[16],

'clf__kern_length':[32],

'clf__F1':[8],

'clf__F2':[16],

'clf__D':[2],

}.

5.3 Decoding

The decoding stage allows the use of deőning multiple different machine learning models
for experimentation. More can be added in the dictionaries deőned at the beginning of
the pipeline.

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #

# Choose model

model = 'Logistic Regression'

standard = {

'Support Vector Machine':LinearSVC(),

'Logistic Regression':LogisticRegression(solver='liblinear'),

'Random Forest':RandomForestClassifier(),

'Gaussian Process':GaussianProcessClassifier(),

'Stochastic Gradient Descent':SGDClassifier(),

'Multi Layer Perceptron':MLPClassifier(),

'Linear Discriminant Analysis':LinearDiscriminantAnalysis(),

}

nets = {

'EEGNet':KerasClassifier(eeg_model),
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'TSGL-EEGNet':KerasClassifier(tsgl_eeg_model)

}

The results of the entire pipeline are shown in Table 5.1, and it appears that the pipeline
struggles to classify based upon the observed performance.

Model Mean Min Max

Random Forest 0.332 0.225 0.559
Support Vector Machine 0.330 0.299 0.456
Logistic Regression 0.331 0.228 0.518
Gaussian Process 0.334 0.187 0.523
Stochastic Gradient Descent 0.338 0.234 0.567
Linear Discriminant Analysis 0.334 0.312 0.476
EEGNet 0.330 0.278 0.498
TSGL-EEGNet 0.334 0.298 0.472

Table 5.1: The model accuracy tested on the cleaned Bath Dataset, with 100 trials and
3 fold cross validation at the training stage, evaluated on a hold out test set. The feature
extraction involves the xDAWN and Riemann Geometry pipeline. Without using the

preprocessing pipeline, the raw data average accuracy was ≈ 33%. The mean, minimum
and maximum accuracy is shown for each model, which appear to have no statistical

difference.
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Results

The set of results listed in Section 6.1 offer a broad analysis of the effects the automated
pipeline has on decoding the raw bath dataset versus the cleaned signal.

6.1 Ablation Study

The raw data was processed in its entirety, including all epochs across all modalities,
the results for which are in Table 6.1. Tables 6.2 and 6.3 show the results for the same
pipeline processed across individual modalities (audio, visual and orthographic) for both
imagination and perception tasks. It is expected that the latter will show performance
improvement due to the speciőc tasks associated with each modality occur in different
areas of the brain. If we can consistently show decoding accuracy greater than baseline
(33%), further investigation can be carried out to tweak the pipeline. Cleaning EEG data
is both a scientiőc and explorative journey, in which trial and error of the order taken for
speciőc steps has to be taken.

Raw Data

The őgures for őve subjects from the bath dataset (Appendix B) were processed using the
cleaning pipeline discussed previously, and also outlined in Appendix C. It is known that
at the recording stage, subject 10 had a strong level of participation. It is the assumption
then, that we should see stronger signals which correlate to the intended event related
potentials to which we are investigating.

At a glance, Figure B.1 shows similarities across the different subjects raw data, which at
this stage is more indicative of the artifacts present in the shared environment they were
recorded in. Subject 10 appears to have a rogue channel which is an order of magnitude
greater than the others. Strong event related potentials seem to occur in all subjects
around the 0.3 and 3 second mark, the őrst event is likely explained by an evoked response.
Subject 8 and 14 look the cleanest, yet it was noted during the recording that event timings
in subject 8 were corrupted, which compounds timing errors with future processing.

The PSD plots in Figure B.2 illustrate the effects of the artifacts distorting the channels.
Here we can see that subject 14 and 17 also have large outlier channels, perhaps explained
by a faulty sensor with low scalp contact.

48
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Ransac/Autoreject

Figure B.4 shows the rejection logs after Random Sample Consensus for each subject,
illustrating which epochs and channels were either interpolated or marked as bad and
dropped. Very few bad epochs and channels are detected in participant 14, in agreement
with previous analysis suggesting that this trial had less artifacts present.

After Ransac and Autoreject (Figure B.5), we observe that the signals are much more
constrained and share similar event timings between participants. Participant 10 seems to
have the least signal to noise ratio in comparison to the other trials.

The PSD plots in Figure B.6 conőrm that the variance between channels in participant 14
are well constrained. In comparison to the PSD before ransac (Figure B.2) we can see
that the automated cleaning process has had a positive effect in cleaning rogue channels.

The topography maps shown in Figure B.7 gives an idea of how our chosen band of
investigation (7-35Hz) will impact the following ICA decomposition. Participant 14
appears to have a smoother transition in its signal to noise, and exhibits much more
constraint as previously shown. The others have signiőcantly more variance in this regard.

A quick comparison of the őrst few channels in Figure B.8 to B.3 shows the impact of the
cleaning process across the board. Again, participant 14 can be seen to have consistent
signals across the channels. Visual inspection suggests we can see possible patterns but
still the signal to noise is quite poor.

ICA

The components classiőed automatically using IC-Label as brain activity are shown in
Figure B.9. We can see that the majority of these do indeed look promising, though it can
be argued that a few seem quite spurious. As this is still an open source project which
can only improve given more time and training data, I see this as an important step in
the right direction for future work and investigation.

Upon applying the chosen ICA components we observe in Figure B.11 the effect of ICA
decomposition. Marked in red are the signals before, and black after cleaning. Strong
spikes remain in all but participant 17. The spikes occur across all subjects, of which the
őrst is likely an evoked response in input stimuli.

The signal to noise issues present before ICA in Figure B.5 show improvement in Figure
B.12 from before, indicating that many of the artifacts showing long term trends have
been removed, leaving us primarily with non-stationary data.

Finally, the channel plots in Figure B.13 show the impact of the entire pipeline in
comparison to Figure B.3, before any pre-processing. It can be seen that the differences
are quite drastic, and much of the artifacts appear to have been removed. Its possible
this approach is too aggressive, but the nature of this dataset in particular is a challenge
for decoders to see any separation between the classes.

xDawn Features

Following the cleaning pipeline, the signal to noise features are boosted and then projected
into tangent space. The effect of this is shown in Figure 6.2. Figure 7.1a explains how the
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classiőers were able to easily separate the classes for the AudViz dataset in the proof of
concept stage. The Bath dataset when using the same pipeline struggles to achieve the
same seperation (Figure 7.1c), likely explaining why classiőcation accuracy cannot exceed
the baseline in the decoding stage.

Comparing Bath to AudViz

(a) Topographical Map

(b) Before Ransac/Autoreject (c) After Ransac/Autoreject

(d) Rejection Table

(e) ICA proposal

Figure 6.1: Comparing to the plots in Appendix B.1 the signals in the Audviz dataset
appear to be cleaner with a stronger correlation between less channels, and less outliers.
A similar amount of epochs and events are rejected at the Ransac/Autoreject stage, yet
the before and after psd plots show that a similar distribution is maintained. The ICA
proposal plot suggests many of the artifacts present were carefully handled during the

collection stage.



CHAPTER 6. RESULTS 51

(a) AudViz (b) Bath

Figure 6.2: The xDawn covariances show the difficulties facing the baseline
classiőcation accuracy for the Bath dataset.

Decoding

Table 6.1 illustrates a comparison between the use of the proposed pipeline on the Bath
dataset (Participant 14 Session 2), in its raw and cleaned form.

Data (All Modalities) Raw Clean

Model Mean Min Max Mean Min Max

Random Forest 0.331 0.276 0.435 0.332 0.225 0.559
Support Vector Machine 0.328 0.278 0.429 0.330 0.299 0.456
Logistic Regression 0.329 0.278 0.498 0.331 0.228 0.518
Gaussian Process 0.334 0.192 0.519 0.334 0.187 0.523
Stochastic Gradient Descent 0.337 0.269 0.495 0.338 0.234 0.567
Linear Discriminant Analysis 0.333 0.226 0.504 0.334 0.312 0.476
EEGNet 0.331 0.282 0.470 0.330 0.278 0.498
TSGL-EEGNet 0.339 0.306 0.488 0.334 0.298 0.472

Table 6.1: The model accuracy tested on the Bath Dataset including all modalities (both
Imagination and Perception), with 100 trials and 3 fold cross validation at the training
stage, evaluated on a hold out test set. The feature extraction involves the xDAWN and
Riemann Geometry pipeline. Both raw and cleaned data average accuracy was 33%±1%.
The mean, minimum and maximum accuracy is shown for each model. There appears to

be no signiőcance to the results, as greater than baseline accuracy was not achieved.

The difficulties in class separation following the feature extraction observed in Figure 6.2
translated to poor performance (Table 6.1) in the decoding stage as predicted. Table 6.2
illustrates the same issues, when inferring across the individual modalities and tasks.
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Data (Audio Perception) Raw Clean

Model Mean Min Max Mean Min Max

Random Forest 0.333 0.282 0.454 0.331 0.245 0.543
Support Vector Machine 0.322 0.277 0.435 0.333 0.288 0.464
Logistic Regression 0.328 0.292 0.489 0.332 0.234 0.508
Gaussian Process 0.335 0.255 0.501 0.331 0.199 0.561
Stochastic Gradient Descent 0.331 0.278 0.423 0.338 0.243 0.487
Linear Discriminant Analysis 0.331 0.232 0.501 0.331 0.266 0.480
EEGNet 0.330 0.290 0.412 0.335 0.292 0.489
TSGL-EEGNet 0.340 0.307 0.475 0.329 0.278 0.488

Data (Visual Perception) Raw Clean

Model Mean Min Max Mean Min Max

Random Forest 0.330 0.283 0.432 0.331 0.224 0.555
Support Vector Machine 0.331 0.286 0.499 0.330 0.278 0.431
Logistic Regression 0.328 0.271 0.509 0.329 0.229 0.519
Gaussian Process 0.335 0.272 0.504 0.333 0.239 0.492
Stochastic Gradient Descent 0.336 0.271 0.499 0.331 0.261 0.549
Linear Discriminant Analysis 0.329 0.291 0.488 0.331 0.299 0.466
EEGNet 0.339 0.267 0.490 0.335 0.295 0.485
TSGL-EEGNet 0.335 0.301 0.485 0.336 0.299 0.475

Data (Orthographic Perception) Raw Clean

Model Mean Min Max Mean Min Max

Random Forest 0.336 0.282 0.477 0.331 0.226 0.561
Support Vector Machine 0.329 0.277 0.431 0.333 0.298 0.495
Logistic Regression 0.339 0.243 0.530 0.330 0.225 0.515
Gaussian Process 0.331 0.199 0.520 0.328 0.187 0.525
Stochastic Gradient Descent 0.340 0.271 0.458 0.331 0.266 0.514
Linear Discriminant Analysis 0.331 0.257 0.544 0.331 0.300 0.544
EEGNet 0.333 0.219 0.481 0.335 0.293 0.458
TSGL-EEGNet 0.334 0.307 0.549 0.333 0.286 0.499

Table 6.2: The model accuracy tested on the Bath Dataset across individual modalities
(Perception), with 100 trials and 3 fold cross validation at the training stage, evaluated

on a hold out test set. The feature extraction involves the xDAWN and Riemann

Geometry pipeline. Both raw and cleaned data average accuracy was 33%±1%. The
mean, minimum and maximum accuracy is shown for each model. There appears to be

no signiőcance to the results, as greater than baseline accuracy was not achieved.
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Data (Audio Imagination) Raw Clean

Model Mean Min Max Mean Min Max

Random Forest 0.328 0.291 0.499 0.333 0.266 0.555
Support Vector Machine 0.323 0.245 0.555 0.331 0.289 0.476
Logistic Regression 0.329 0.244 0.476 0.331 0.244 0.516
Gaussian Process 0.331 0.204 0.566 0.333 0.277 0.531
Stochastic Gradient Descent 0.337 0.292 0.478 0.339 0.255 0.499
Linear Discriminant Analysis 0.335 0.256 0.523 0.330 0.275 0.490
EEGNet 0.331 0.286 0.453 0.335 0.293 0.555
TSGL-EEGNet 0.339 0.204 0.563 0.336 0.292 0.491

Data (Visual Imagination) Raw Clean

Model Mean Min Max Mean Min Max

Random Forest 0.329 0.245 0.466 0.335 0.264 0.445
Support Vector Machine 0.333 0.290 0.489 0.331 0.298 0.444
Logistic Regression 0.337 0.260 0.590 0.340 0.236 0.520
Gaussian Process 0.332 0.284 0.510 0.330 0.263 0.433
Stochastic Gradient Descent 0.332 0.260 0.491 0.336 0.270 0.539
Linear Discriminant Analysis 0.333 0.290 0.480 0.332 0.204 0.499
EEGNet 0.331 0.292 0.473 0.336 0.290 0.480
TSGL-EEGNet 0.329 0.300 0.455 0.331 0.240 0.479

Data (Orthographic Imagination) Raw Clean

Model Mean Min Max Mean Min Max

Random Forest 0.329 0.240 0.553 0.337 0.252 0.520
Support Vector Machine 0.325 0.279 0.435 0.335 0.259 0.494
Logistic Regression 0.336 0.247 0.521 0.334 0.253 0.501
Gaussian Process 0.335 0.190 0.494 0.333 0.245 0.566
Stochastic Gradient Descent 0.339 0.257 0.464 0.331 0.270 0.520
Linear Discriminant Analysis 0.333 0.255 0.520 0.338 0.228 0.555
EEGNet 0.341 0.266 0.493 0.338 0.290 0.451
TSGL-EEGNet 0.331 0.290 0.501 0.332 0.295 0.500

Table 6.3: The model accuracy tested on the Bath Dataset across individual modalities
(Imagination), with 100 trials and 3 fold cross validation at the training stage, evaluated

on a hold out test set. The feature extraction involves the xDAWN and Riemann

Geometry pipeline. Both raw and cleaned data average accuracy was 33%±1%. The
mean, minimum and maximum accuracy is shown for each model. There appears to be

no signiőcance to the results, as greater than baseline accuracy was not achieved.
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Conclusion

Main Objectives

The overall goal of this project was to create an automated pre-processing pipeline to
clean EEG data, which we can then use to decode (classify) what a person is thinking
about based upon their neural activity. Through this context, a comparison of stochastic
and deterministic machine learning model performance was drawn. Makoto has shared
many valuable insights into the experimentation stages of pre-processing, and this pipeline
was designed to implement all of the best practices suggested. Appendix C.1 contains the
code outline for this stage, in which the steps are

• Apply the custom montage.
• Filter the channels between 7-35Hz.
• Epoch the raw data around the events, and decimate (resample) to 128Hz.
• Perform Ransac and Autoreject to remove artifacts from both entire channels and

individual events.
• Run Independent Component Analysis using the extended Picard algorithm.
• Choose which ICA’s to keep using the neural network IC-Label and apply the chosen

ICA’s.

With this cleaned signal we then perform feature extraction using a projection into
tangent space and xDawn spatial őltering. This can then be fed into any machine learning
algorithm.

The pipeline showed great success with the AudViz dataset, yet struggled with the Bath

dataset. Despite this, a comparison of machine learning models was able to be drawn
on the prior dataset, and the neural networks show great promise in both their training
accuracy, and future ability to use transfer learning across participants.

Pre-Processing

A comparison between both AudViz and Bath datasets for the entire pipeline was drawn,
and performs well with the prior. After inspection across 5 participants (Appendix B.1)
in the Bath dataset for the pre-processing pipeline, participant 14 session 2 was chosen
for the ablation study as this signal showed the most promise. The study was broken
down into three investigations, the results of which are shown in Tables 6.1, 6.2 and 6.3.
The őrst was processed with both imagination and perception across all the modalities of
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audio, visual and orthographic. The second and third subclass imagination and perception
individually, along with each modality separately.

Figure 6.1 offers a comparison to the Bath ablation processed in the same pipeline with
the AudViz dataset. The topographical map perhaps sheds some insight into the the
differences between the two datasets. In AudViz, there appears to be localised clusters
for each frequency band, yet in Bath the map appears almost to look like a gaussian
kernel, with a radial pattern. This might suggest that the tasks are too general, and
the experiment could show improvement at the data collection phase by introducing
more lateralised tasks. Repeating the experiment with just the left and right eye for the
perception task for example, could allow us to localise the target signals and in comparison
to recording both simultaneously.

The distribution of the psd in Figure 6.1c has a more complex pattern, especially toward
the 35Hz range, where it seems to diverge. At the 50Hz range, there appears to be no
powerline artifacts either. On inspection alone, it is difficult to explain the difference in
accuracy between the Bath and AudViz datasets. Perhaps the topographical map is the
vital component in assessing future performance of classiőcation, and a radial pattern
indicates a lack of features.

Decoding

After 100 independent trials with unique random seeds, each with 5-fold cross validation
and stratiőed to ensure even class distributions between the test and training set,
performance greater than the baseline of 3 class classiőcation (33.3%) was not achieved
on the latter. The outcome was the same when processing the raw and clean data across
all modalities simultaneously (Table 6.1) and separately (Tables 6.2 and 6.3). The nature
of classiőcation for imagination and perception is a broader problem than the lateralized
classes in the AudViz dataset, which involves tasks separated by the left and right audio
and visual responses, which likely explains the difficulty in class separation in the Bath
dataset.

When testing models which performed > 50% in classiőcation accuracy on a further hold
out set, performance was not consistent, and either achieved high accuracy due to chance,
or possibly overőt to their training sets.

Performing the same analysis on participant 17 session 1 yielded the same outcome as
participant 14 session 2, showing the difficulties in classiőcation are present across subjects.
Studies have shown (Özbeyaz and Arıca, 2018) that a subjects familiarity with given tasks
have improved signal to noise ratio, and as such, classiőcation with respect to familiarity
has a degree of lateralization. This could be a valid consideration when collecting data for
future participants in the Bath dataset, as secondary or third sessions could be investigated
to determine if a subjects experience with the task allows for increased resolution in the
event potentials.

Cross fold validation was a vital step in reducing the possibility of making assumptions
about model accuracy. If the average of 100 runs achieves a higher than baseline accuracy
we can be more conődent about the stochastic nature during training that deterministic
models achieve. Before I implemented this, I struggled to explain the discrepancies
between accuracy in different training runs.
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Feature Extraction

Figure 6.2 illustrated a possible explanation for the inability to achieve acceptable accuracy
in the Bath dataset. The clusters of classes overlap heavily, thus for future experiments it
is recommended that these feature plots are investigated before further machine learning
classiőcation is attempted. It’s possible that through exploring the hyperparameter space
at this stage would allow discovery of a set of conditions which does indeed create class
separation for the next step of decoding.

Figure 7.1 shows another dataset from python-mne, for motor imagery. This is similar
to AudViz and further shows the relative ease that lateralised tasks can be separated by
task for classiőcation. Figure 7.3 analyses the minimum distance to the mean for the
covariances in both the bath and motor imagery datasets illustrates how few features are
extracted at this stage.

(a) AudViz (b) Bath (c) Motor Imagery

Figure 7.1: The xDawn Covariances show the difficulties facing the baseline
classiőcation accuracy for the Bath dataset. The motor imagery dataset also shows good

class separation.

Further Work

During the testing phase with the AudViz dataset, the EEGNet family of neural networks
had the best performance, and further developments by (Zhang et al., 2022) could be
used in future pipelines. An improvement to my approach would implement the focal loss
they describe, which allows the network to be unbiased during training on datasets with
imbalanced classes, preventing possible overőtting to the majority class.

Further work could involve using the KARA One dataset in the proposed decoding pipeline
to conőrm its performance akin to the observed success using AudViz. KARA One (Zhao
and Rudzicz, 2015) combines three modalities (EEG, face tracking, and audio) during
imagined and vocalized phonemic and single-word prompts. They have shown success in
accurately classifying imagined phonological categories solely from EEG data.

http://www.cs.toronto.edu/~complingweb/data/karaOne/karaOne.html
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(a) Motor Imagery (b) Audviz

Figure 7.2: The confusion matrices for the Motor Imagery and AudViz datasets,
processed with the full pipeline.



CHAPTER 7. CONCLUSION 58

(a) Bath

(b) Motor Imagery

Figure 7.3: The minimum distance to mean covariances for both bath and motor
imagery datasets illustrate the difficulties facing a classiőer. The signal appears very ŕat

and featureless.
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Appendix B

Results

B.1 Ablation Study

B.1.1 Before Ransac/Autoreject
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(a) Participant 8 - Session 2 (b) Participant 10 - Session 1

(c) Participant 14 - Session 2 (d) Participant 15 - Session 1

(e) Participant 17 - Session 1

Figure B.1: 10-1 appears to have a rogue channel which is an order of magnitude
greater than the others. Strong event related potentials seem to occur in all subjects
around the 0.3 and 3 second mark. 8-2 and 14-2 look the cleanest, yet it was noted
during the recording that event timings were corrupted which will compound timing

errors with future processing.
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(a) Participant 8 - Session 2 (b) Participant 10 - Session 1

(c) Participant 14 - Session 2 (d) Participant 15 - Session 1

(e) Participant 17 - Session 1

Figure B.2: 14-2 and 17-1 appear to have a rogue channel which is likely caused by a
faulty sensor with poor scalp contact.
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(a) Participant 8 - Session 2 (b) Participant 10 - Session 1

(c) Participant 14 - Session 2 (d) Participant 15 - Session 1

(e) Participant 17 - Session 1

Figure B.3: At a glance, we can see similarities across the different subjects raw data,
which at this stage is more indicative of the artifacts present in the shared environment

they were recorded in.
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B.1.2 After Ransac/Autoreject
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(a) Participant 8 - Session 2

(b) Participant 10 - Session 1

(c) Participant 14 - Session 2

(d) Participant 15 - Session 1

(e) Participant 17 - Session 1

Figure B.4: Very few bad epochs and channels are detected in participant 14, in
agreement with previous analysis suggesting that this trial had less artifacts present.
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(a) Participant 8 - Session 2 (b) Participant 10 - Session 1

(c) Participant 14 - Session 2 (d) Participant 15 - Session 1

(e) Participant 17 - Session 1

Figure B.5: After ransac and autoreject, we observe that the signals are much more
constrained and share similar event timings between participants.
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(a) Participant 8 - Session 2 (b) Participant 10 - Session 1

(c) Participant 14 - Session 2 (d) Participant 15 - Session 1

(e) Participant 17 - Session 1

Figure B.6: The variance between channels in participant 14 are well constrained. In
comparison to the PSD before ransac (Figure B.2) we can see that the automated

cleaning process has had a positive effect in cleaning rogue channels.
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(a) Participant 8 - Session 2

(b) Participant 10 - Session 1

(c) Participant 14 - Session 2

(d) Participant 15 - Session 1

(e) Participant 17 - Session 1

Figure B.7: Participant 14 appears to have a smoother transition in its signal to noise,
and exhibits much more constraint as previously shown. The others have signiőcantly

more variance in this regard.
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(a) Participant 8 - Session 2 (b) Participant 10 - Session 1

(c) Participant 14 - Session 2 (d) Participant 15 - Session 1

(e) Participant 17 - Session 1

Figure B.8: Again, participant 14 can be seen to have consistent signals across the
channels. Visual inspection suggests we can see possible patterns but still the signal to

noise is quite poor.
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B.1.3 After ICA

(a) Participant 10 - Session 1 (b) Participant 14 - Session 2

(c) Participant 15 - Session 1 (d) Participant 17 - Session 1

Figure B.9: The components marked as brain activity, automatically classiőed using
IC-Label.
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(a) Participant 8 - Session 2

Figure B.10: The components marked as brain activity, automatically classiőed using
IC-Label.
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(a) Participant 8 - Session 2 (b) Participant 10 - Session 1

(c) Participant 14 - Session 2 (d) Participant 15 - Session 1

(e) Participant 17 - Session 1

Figure B.11: The effect of ICA decomposition. Marked in red are the signals before,
and black after cleaning. Strong spikes remain in all but participant 17.



APPENDIX B. RESULTS 81

(a) Participant 8 - Session 2 (b) Participant 10 - Session 1

(c) Participant 14 - Session 2 (d) Participant 15 - Session 1

(e) Participant 17 - Session 1

Figure B.12: The signal to noise issues present before ICA show improvement from
before, indicating that many of the artifacts showing long term trends have been removed,

leaving us primarily with non-stationary data.
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(a) Participant 8 - Session 2 (b) Participant 10 - Session 1

(c) Participant 14 - Session 2 (d) Participant 15 - Session 1

(e) Participant 17 - Session 1

Figure B.13: The events listed here show the impact of the entire pipeline in
comparison to Figure B.3, before any pre-processing. It can be seen that the differences
are quite drastic, and much of the artifacts appear to have been removed. Its possible

this approach is too aggressive, but the nature of this dataset in particular is a challenge
for decoders to see any separation between the classes.



Appendix C

Code

C.1 Pre-Processing

1 import mne

2 from mne import preprocessing

3 import pandas as pd

4 from sklearn.model_selection import train_test_split

5 from mne.io import read_raw_eeglab

6 from mne import channels

7 from mne.io import eeglab

8 import numpy as np

9 import matplotlib.pyplot as plt

10 %config InlineBackend.figure_format = 'retina'

11 import seaborn as sns

12 sns.set_theme('paper', style='dark')

13 import warnings

14 warnings.filterwarnings("ignore")

15 from mne import compute_raw_covariance

16 from mne_icalabel import label_components

17

18 from autoreject import AutoReject

19

20 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#

21 # Montage

22 ant_montage = channels.read_custom_montage(

23 'eeg_data/edit.loc', coord_frame= 'head', head_size=0.08)

24 raw.set_montage(ant_montage)

25 # raw.plot_sensors(show_names=True)

26 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#

27 # Remove/Clean known bad channels

28 if cap_size == 'large':

29 raw.info['bads'] += ['CCP1h']

30 # picks can then be taken into epochs

31 picks = mne.pick_types(raw.info, exclude='bads')

32 raw.filter(7, 35, n_jobs=12)

33 # Alpha 8-12Hz

34 # raw.filter(8, 12, n_jobs=12)

35 # Clean Power Line

36 # raw.notch_filter(freqs=None, method='spectrum_fit', n_jobs=12)

37 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#

38 # Epoching for ICA
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39 events, event_ids = mne.events_from_annotations(

40 raw, verbose = False)

41 epochs = mne.Epochs(

42 raw=raw,

43 events=events,

44 event_id=event_ids,

45 preload=True,

46 tmin=0,

47 tmax=4,

48 baseline=None,

49 event_repeated='merge',

50 decim=8,

51 )

52 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#

53 # Ransac/Autoreject

54 rs = Ransac(n_jobs=12)

55 epochs = rs.fit_transform(epochs)

56 ar = AutoReject(n_jobs=12)

57 epochs, reject_log = ar.fit_transform(epochs, return_log=True)

58 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#

59 # ICA

60 epochs.set_eeg_reference()

61 _, chans, _ = epochs.get_data().shape

62 ica = mne.preprocessing.ICA(

63 method='picard', fit_params=dict(extended=True, ortho=False)

64 )

65 ica.fit(epochs)

66 # ICA Labels

67 ic_labels = label_components(epochs, ica, method='iclabel')

68 labels = ic_labels["labels"]

69 exclude_idx = [

70 i for i, label in enumerate(labels) if label not in ["brain"]

71 ]

72 picks_idx = [

73 i for i, label in enumerate(labels) if label in ["brain"]

74 ]

75 print(f"Excluding these ICA components: {exclude_idx}")

76 # Apply ICA

77 ica.apply(epochs, include=picks_idx, exclude=exclude_idx)

C.2 Utilities

1 import tensorflow as tf

2 import numpy as np

3 import pandas as pd

4

5 import matplotlib.pyplot as plt

6 %config InlineBackend.figure_format = 'retina'

7 import seaborn as sns

8 sns.set_theme('paper', style='dark')

9

10 from sklearn.metrics import ConfusionMatrixDisplay, confusion_matrix

11

12 def conf_matrix(y_imag, y_pred, modality):

13 """Plot the Confusion Matrix"""

14 names = ['Flower', 'Guitar', 'Penguin']

15 cm = confusion_matrix(y_imag, y_pred)
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16 ConfusionMatrixDisplay(cm, display_labels=names).plot(colorbar=False)

17 acc2 = np.mean(y_pred == y_imag)

18 plt.title(f'{modality}, Accuracy: {acc2:.2f}')

19 plt.show()

20

21 def history(df):

22 fig, ax = plt.subplots(figsize=(10,10))

23 epoch_ = range(len(df))

24 plt.plot(epoch_, df['loss'], label='Train Loss')

25 plt.plot(epoch_, df['val_loss'], label='Val Loss')

26 plt.plot(epoch_, df['accuracy'], label='Train Accuracy')

27 plt.plot(epoch_, df['val_accuracy'], label='Val Accuracy')

28 plt.legend()

29 plt.ylabel('Loss/Accuracy')

30 plt.xlabel('Epoch')

31

32 class Reshape(BaseEstimator, TransformerMixin):

33 """Reshapes to (trials, channels, samples, kernel)."""

34 def __init__(self):

35 pass

36 def fit(self, X, y=None):

37 return self

38 def transform(self, X, y=None):

39 kernels = 1

40 trials, chans, samples = X.shape

41 return X.reshape(trials, chans, samples, kernels)

C.3 Neural Networks

This extension to EEGNet called TSGL-EEGNet (Deng et al., 2021) adds a regularization layer. The
rest of the base pipeline remained the same in analysis from Appendix C.

1 class TSG(Regularizer):

2 '''Regularizer for TSG regularization.'''

3 def __init__(self, l1=0., l21=0., tl1=0.):

4 self.l1 = K.cast_to_floatx(l1)

5 self.l21 = K.cast_to_floatx(l21)

6 self.tl1 = K.cast_to_floatx(tl1)

7 def __call__(self, x):

8 if not self.l1 and not self.l21 and not self.tl1:

9 return K.constant(0.)

10 regularization = 0.

11 if x.shape[0] == 1:

12 ntf = tf.squeeze(x, 0)

13 elif x.shape[1] == 1:

14 ntf = tf.squeeze(x, 1)

15 elif len(x.shape) == 2:

16 ntf = tf.expand_dims(x, axis=0)

17 else:

18 ntf = x

19 if self.l1:

20 regularization += self.l1 * tf.reduce_sum(tf.abs(ntf))

21 if self.l21:

22 regularization += self.l21 * tf.reduce_sum(

23 tf.sqrt(

24 tf.multiply(tf.cast(ntf.shape[2], tf.float32),

25 tf.reduce_sum(tf.square(ntf), [0, 1]))))
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26 if self.tl1:

27 regularization += self.tl1 * tf.reduce_sum(

28 tf.abs(tf.subtract(ntf[:, :-1, :], ntf[:, 1:, :])))

29 return regularization

30

31 def get_config(self):

32 return {

33 'l1': float(self.l1),

34 'l21': float(self.l21),

35 'tl1': float(self.tl1)

36 }

37

38 def l2_1(l21=0.01):

39 '''Group lasso'''

40 return TSG(l21=l21)

41

42 def tsc(tl1=0.01):

43 '''

44 Temporal constrained to preserve the temporal smoothness, for

45 activity_regularizer.

46 '''

47 return TSG(tl1=tl1)

48

49 def sgl(l1=0.01, l21=0.01):

50 '''Sparse group lasso, for kernel_regularizer'''

51 return TSG(l1=l1, l21=l21)
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52 def tsgl(l1=0.01, l21=0.01, tl1=0.01):

53 '''

54 Temporal constrained sparse group lasso, use tsc + sgl instead.

55 '''

56 return TSG(l1=l1, l21=l21, tl1=tl1)

57

58 def eeg_model(nb_classes, chans, samples):

59 """EEGNet."""

60 def EEGNet(

61 nb_classes, chans=64, samples=128,

62 dropout_rate=0.5, kern_length=64, FSLength=16, F1=8,

63 D=2, F2=16, norm_rate=0.25

64 ):

65

66 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#

67 # Input

68 input = tf.keras.layers.Input(shape=(chans, samples, 1))

69 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#

70 # Block 1

71 x = tf.keras.layers.Conv2D(

72 F1, (1, kern_length), padding='same',

73 input_shape=(chans, samples, 1),

74 use_bias=False)(input)

75 x = tf.keras.layers.BatchNormalization()(x)

76 x = tf.keras.layers.DepthwiseConv2D(

77 (chans, 1), use_bias=False,

78 depth_multiplier=D, depthwise_constraint=max_norm(1.))(x)

79 x = tf.keras.layers.BatchNormalization()(x)

80 x = tf.keras.layers.Activation('swish')(x)

81 x = tf.keras.layers.AveragePooling2D((1, 4))(x)

82 x = tf.keras.layers.Dropout(dropout_rate)(x)

83 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#

84 # Block 2

85 x = tf.keras.layers.SeparableConv2D(

86 F2, (1, FSLength), use_bias=False, padding='same')(x)

87 x = tf.keras.layers.BatchNormalization()(x)

88 x = tf.keras.layers.Activation('swish')(x)

89 x = tf.keras.layers.AveragePooling2D((1, 8))(x)

90 x = tf.keras.layers.Dropout(dropout_rate)(x)

91 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#

92 # Output

93 x = tf.keras.layers.Flatten(name='flatten')(x)

94 x = tf.keras.layers.Dense(nb_classes, name='dense',

95 kernel_constraint=max_norm(norm_rate))(x)

96 output = tf.keras.layers.Activation('softmax', name='softmax')(x)

97 return tf.keras.models.Model(inputs=input, outputs=output)

98

99 model = EEGNet(

100 nb_classes, chans, samples,

101 dropout_rate=0.5, kern_length=32, F1=8, D=2, F2=16,

102 )

103 model.compile(

104 loss='sparse_categorical_crossentropy',

105 optimizer='adam', #tf.keras.optimizers.Adam(learning_rate=0.0001, amsgrad=True),

106 metrics=['accuracy']

107 )

108 return model

109
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110 def tsgl_eeg_model(nb_classes, chans, samples):

111 """TSGL-EGNet."""

112 def TSGLEEGNet(

113 nb_classes, chans, samples, colors=1,

114 dropout_rate=0.5, kern_length=64, FSLength=16, F1=9,

115 D=4, F2=32, l1=1e-4, l21=1e-4, tl1=1e-5, norm_rate=0.25,

116 ):

117 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#

118 # Input

119 input = tf.keras.layers.Input(shape=(chans, samples, colors), dtype=tf.float32)

120 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#

121 # Block 1

122 x = tf.keras.layers.Conv2D(

123 F1, (1, kern_length), padding='same',

124 use_bias=False)(input)

125 x = tf.keras.layers.BatchNormalization(axis=-1)(x)

126 x = tf.keras.layers.DepthwiseConv2D(

127 (chans, 1), use_bias=False,

128 depth_multiplier=D, depthwise_constraint=max_norm(1.))(x)

129 x = tf.keras.layers.BatchNormalization(axis=-1)(x)

130 x = tf.keras.layers.Activation('swish')(x)

131 x = tf.keras.layers.AveragePooling2D((1, 4))(x)

132 x = tf.keras.layers.Dropout(dropout_rate)(x)

133 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#

134 # Block 2

135 x = tf.keras.layers.Conv2D(F2, (1, FSLength),

136 use_bias=False,

137 padding='same',

138 kernel_regularizer=sgl(l1, l21),

139 activity_regularizer=tsc(tl1))(x)

140 x = tf.keras.layers.BatchNormalization(axis=-1)(x)

141 x = tf.keras.layers.Activation('swish')(x)

142 x = tf.keras.layers.AveragePooling2D((1, 8))(x)

143 x = tf.keras.layers.Dropout(dropout_rate)(x)

144 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#

145 # Output

146 x = tf.keras.layers.Flatten(name='flatten')(x)

147 x = tf.keras.layers.Dense(nb_classes, name='dense',

148 kernel_constraint=max_norm(norm_rate))(x)

149 output = tf.keras.layers.Activation('softmax', name='softmax')(x)

150

151 return tf.keras.models.Model(inputs=input, outputs=output)

152

153 model = TSGLEEGNet(

154 nb_classes, chans, samples,

155 dropout_rate=0.5, kern_length=32, F1=8, D=4, F2=16,

156 )

157 model.compile(

158 loss='sparse_categorical_crossentropy',

159 optimizer='adam', #tf.keras.optimizers.Adam(learning_rate=0.0001, amsgrad=True),

160 metrics=['accuracy']

161 )

162 return model
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C.4 Pipeline

1 from pipeline import eeg_model, tsgl_eeg_model, conf_matrix, history, Reshape

2 import numpy as np

3 import pandas as pd

4 import matplotlib.pyplot as plt

5 %config InlineBackend.figure_format = 'retina'

6 import seaborn as sns

7 sns.set_theme('paper', style='dark')

8

9 from sklearn.model_selection import GridSearchCV

10 from sklearn.preprocessing import StandardScaler

11 from sklearn.pipeline import Pipeline

12 # from scikeras.wrappers import KerasClassifier

13 from keras.wrappers.scikit_learn import KerasClassifier

14 from tensorflow.keras import utils as np_utils

15 from sklearn.ensemble import RandomForestClassifier, VotingClassifier, AdaBoostClassifier

16 from sklearn.linear_model import LogisticRegression, SGDClassifier

17 from sklearn.gaussian_process import GaussianProcessClassifier

18 from sklearn.naive_bayes import GaussianNB

19 from sklearn.svm import LinearSVC

20 from sklearn.model_selection import train_test_split

21 from sklearn.gaussian_process.kernels import RBF, WhiteKernel

22 from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

23 from sklearn.neural_network import MLPClassifier

24 from sklearn.cross_decomposition import CCA

25 from sklearn.decomposition import PCA

26 from sklearn.metrics import accuracy_score

27 from sklearn.feature_selection import VarianceThreshold

28

29 from pyriemann.utils.viz import plot_embedding

30 from pyriemann.spatialfilters import Xdawn, AJDC

31 from pyriemann.estimation import XdawnCovariances, ERPCovariances, Shrinkage, Covariances

32 from pyriemann.tangentspace import TangentSpace, FGDA

33 from pyriemann.classification import MDM, TSclassifier, FgMDM

34 from pyriemann.clustering import Potato, Kmeans

35 from pyriemann.embedding import SpectralEmbedding

36 from pyriemann.channelselection import ElectrodeSelection

37

38 from mne.decoding import CSP, Scaler, Vectorizer, PSDEstimator, UnsupervisedSpatialFilter

39 from picard import Picard

40

41 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #

42 # Choose model

43 model = 'Logistic Regression'

44 standard = {

45 'Support Vector Machine':LinearSVC(),

46 'Logistic Regression':LogisticRegression(solver='liblinear'),

47 'Random Forest':RandomForestClassifier(),

48 'Gaussian Process':GaussianProcessClassifier(),

49 'Stochastic Gradient Descent':SGDClassifier(),

50 'Multi Layer Perceptron':MLPClassifier(),

51 'Linear Discriminant Analysis':LinearDiscriminantAnalysis(),

52 }

53 nets = {

54 'EEGNet':KerasClassifier(eeg_model),

55 'TSGL-EEGNet':KerasClassifier(tsgl_eeg_model)

56 }
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57 models = list(standard) + list(nets)

58 assert model in models, f'Model must be one of {models}.'

59 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #

60 # Choose modality

61 epoch_modality = audviz_epochs

62 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #

63 # Split data

64 y = epoch_modality.events[:, -1]

65 nb_classes = len(set(y))

66 if nb_classes > 4:

67 nb_classes = 3

68 y = y % nb_classes

69 X = epoch_modality.get_data() * 1e6

70 X_train, X_test, y_train, y_test = train_test_split(

71 X, y, test_size=0.25, stratify=y

72 )

73 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #

74 # Pipeline (Standard Models)

75 if model in standard:

76 pipe = Pipeline([

77 ('pca', UnsupervisedSpatialFilter(PCA())),

78 ('xDawnCov', XdawnCovariances()), # out dim 3

79 ('TangentSpace', TangentSpace()), # out dim 2

80 # ('csp', CSP()),

81 # ('var', VarianceThreshold(threshold=0.1)),

82 ('scale', StandardScaler()),

83 ('clf', standard[model])

84 ])

85 # Hyperparameters

86 param_grid = {}

87 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #

88 # Pipeline (Neural Networks)

89 # Only transform the validation set (Avoid leakage)

90 if model in nets:

91 pipe = Pipeline([

92 ('pca', UnsupervisedSpatialFilter(PCA())),

93 ('xDawn', Xdawn()),

94 # ('csp', CSP()),

95 ('scale', Scaler(scalings='mean')),

96 ('reshape', Reshape())

97 ])

98 # Create Validation Set

99 X_train, X_valid, y_train, y_valid = train_test_split(

100 X_train, y_train, test_size=0.33, stratify=y_train

101 )

102 pipe.fit(X_train, y_train)

103 X_valid = pipe.transform(X_valid)

104 _, chans, samples, _ = X_valid.shape

105 # Add Model

106 pipe.steps.append(['clf', nets[model]])

107 # Hyperparameters

108 param_grid = {

109 'clf__nb_classes':[nb_classes],

110 'clf__chans':[chans],

111 'clf__samples':[samples],

112 'clf__epochs':[250],

113 'clf__batch_size':[16],

114 'clf__validation_data':[(X_valid, y_valid)],
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115 'clf__verbose':[2],

116 'clf__kern_length':[32],

117 'clf__F1':[8],

118 'clf__F2':[16],

119 'clf__D':[2],

120 }

121 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #

122 # Plot the Covariances

123 plot_pipe = Pipeline([

124 ('pca', UnsupervisedSpatialFilter(PCA())),

125 ('xDawn', XdawnCovariances()),

126 ])

127 covs = plot_pipe.fit(X_train, y_train).transform(X_test)

128 #transdict = {0:'Flower', 1:'Guitar', 2:'Penguin'}

129 #phoenetic = np.array([transdict[idx] for idx in y_test])

130 plot_embedding(covs, y_test, title="Embedding of Covariances")

131 # Grid search with cross validation

132 # Set n_jobs to 1 if running on GPU

133 grid = GridSearchCV(pipe, param_grid, cv=3, n_jobs=3)

134 results = grid.fit(X_train, y_train)

135 if model in nets:

136 hist = pd.DataFrame(results.best_estimator_['clf'].model.history.history)

137 history(hist)

138 y_pred = grid.predict(X_test)

139 acc = accuracy_score(y_pred, y_test)
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