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Abstract
The works of Rayleigh, Taylor, Plesset, Bell, Binnie, Birkhoff, Fisher, Prosperitti, Lin
and Amendt form the basis of this review, concerning Bell-Plesset Instability. [1–13]

Amendt’s treatment has been expanded to include viscous effects via Joseph’s
method, where a form of Bernoulli’s equation is used, incorporating compressibility,
derived from the Navier Stokes formulation.

I Introduction

The basis of investigation for this paper stems from the seminal paper of Plesset, [5] who was the first to
formally publish material of bubble collapse, specifically concerning the perturbation of a collapsing spherical

interface. The description of this process has since been coined Bell-Plesset instability. He drew inspiration from
a textbook by the name of Underwater Explosions, [14] which dealt solely with the topic of the title. His
determination from this analysis found that bubbles do not always retain their spherical symmetry.

Prosperitti [15] worked closely with Plesset, and expanded on his work by introducing a viscous correction to the
liquid. His approach involved taking the curl of the dynamical equations to express the viscosity through
vorticity. My own approach is in conflict to this derivation, and through comparison with experimentation I hope
to explore validity of both approaches. Prosperitti assumes the viscosity arises through vorticity, and I express
the viscous correction by assuming zero vorticity. Of note here is the similarity by which the two methods have
with respect to their proportionality. They differ only slightly by their respective modal Atwood numbers, namely
the terms in the case of a bubble where ρ1 = 0

V1 = −2ν2(n− 1)(n+ 2);

V2 = −4ν2(n2 + 4n+ 1);
. . . (1)

in contrast to Prosperitti’s approach
V1 = 2ν2(2n+ 1)(n+ 2);

V2 = 2ν2(n− 1)(n+ 2),
. . . (2)

of which I suspect shows more consistent promise. Physically, I’m not too sure whether a fluid with negative
viscosity is valid in reality via method (1)!

In practical application this study is important in the field of sonochemistry. The extreme rate of collapse
confines intense energy focused into a singularity, which is responsible for high temperatures and subsequent
reactions. If the bubble collapse is not spherical, the consensus is that this focusing of energy is less intense, and
the maximum achievable temperatures are correspondingly lower; therefore determination of interfacial stability
would allow predictions on the influence this boundary has on chemical production.

The main pursuit then, is to first derive from scratch Plesset’s approach, and then follow with the viscous
corrections of Prosperitti and my own. The investigation will conclude with the comparison of the two
approaches, and whether my simplified approach through assumption of zero vorticity is valid. The following
page lists both of the final results of both methods. So far I have completed the derivation of Plesset [5],
Amendt [13], Fisher [10] and Bell [8], of which only Plesset’s is shown here. All were verified by both hand and the
Mathematica code shown in section (D). Amendt [13] followed all of these approaches with a modified potential
which is regular at the origin, but analysis shows that in the limits of a bubble perturbation, the original work of
Plesset suffices in our investigation. This is demonstrated later in section (IV), and justifies the use of Plesset’s
potential. Derivation of Prosperitti’s approach is a work in progress.

The following pages first derive Plesset’s seminal paper on the topic, with a comparison of his approach versus
Amendt’s, concluding in the justification for the potential used in our specific case. Next a substitution is made
in the final result to solve the result analytically via a WKBJ approximation, giving us a view of the
proportionality relationship of the motion over time. This approximation should allow us, to a reasonable error,
to verify assumptions made in Prosperitti’s approach on the integral parts of his solution; he assumes that these
have a small contribution compared to the differential parts, which is a claim worth verifying.
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My Approach

Incompressible Bell-Plesset Instability with Viscous Terms and Surface Tension

ä+ ȧ

(
3Ṙ

R
+

V1

R2

)
+ a

(
ṘV2

R3
+
R̈A1

R
+

S1
R3

)
= 0. . . . (3)

Modal Atwood Numbers

S1 =
(n− 1)(n+ 1)(n+ 2)σ

ρ2
;

A1 = −(n− 1);

V1 = −2ν2(n− 1)(n+ 2);

V2 = −4ν2(n2 + 4n+ 1);
. . . (4)

Prosperitti’s Approach

Incompressible Bell-Plesset Instability with Viscous Terms and Surface Tension

ä+ ȧ

(
3Ṙ

R
+

V1

R2

)
+ a

(
ṘV2

R3
+
R̈A1

R
+

S1
R3

)
= 0. . . . (5)

Modal Atwood Numbers

S1 =
(n− 1)(n+ 1)(n+ 2)σ

ρ2
;

A1 = −(n− 1);

V1 = 2ν2(2n+ 1)(n+ 2);

V2 = 2ν2(n− 1)(n+ 2),
. . . (6)

List of Symbols
a Distortion Amplitude
R Interface Radius
F Time Dependent Density
Yn Spherical Harmonic
An Modal Atwood Number
Vn Viscous Terms Atwood Number
Sn Surface Tension Term Atwood Number

φ Velocity Potential
µ Dynamic Viscosity
ν Kinematic Viscosity
ρ Density
σ Surface Tension
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II Derivation of Plessets Approach
Solution to the Incompressible Stability Problem

The analysis presented here follows the approach of Plesset. [5] A fluid of density ρ1 is contained within
a sphere of radius R; a fluid of density ρ2 occupies the region exterior to this sphere. The distortion, or ripple

at the interface is denoted by rs. Radial position within the liquid will be denoted by the distance r, from the
center of the bubble. σ is the surface tension and An is the modal Atwood number (density ratio) of the
instability. The ripple is contained by the regions r > R, inside the ripple, and r < R, outside of the ripple.

rs

R

ρ2

ρ1
r

φ1

φ2

ν1

σ
An ν2

Figure 1: Notation for Bell-Plesset Instability

Velocity Potential φ

As the flow is irrotational, there exists a velocity potential φ, which satisfies Laplace’s equation ∇2φ = 0 in
spherical coordinates. If φ is independent of θ, ϕ we have the velocity potential

φ =
A

r
+B. . . . (7)

If φ is independent of ϕ:

φ =

(
Arn +

B

rn+1

)
Y mn , . . . (8)

where Y mn is a spherical harmonic. We take m = 0 as its likely that the sphere will have an axis of symmetry and
the radial dependence is also independent of m. The origin of a spherical coordinate system is taken at the center
of the spherical interface R(t). When the interface is strictly spherical, the velocity potential is

φ =
R2Ṙ

r
, . . . (9)

where the radial velocity at the point r in the fluid is ∂φ
∂r . This potential implies a source or sink at the origin

depending on the sign of Ṙ. The stability of the spherical interface will be established by considering whether a
distortion of the interface of small amplitude grows or diminishes. We consider a distortion at the interface from
R to rs, where

rs = R+ aYn. . . . (10)

Yn is a spherical harmonic of degree n and a is a function of time t such that we have the relationship

|a(t)| � R(t),

where we clarify that
|a(t)|
R(t)

� 1 = ε.
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The stability analysis will be limited to O(ε). To this order, the fluid particle velocity at the interface in the radial
direction is given by

u =
∂rs
∂t

= −∂φ
∂r

∣∣∣∣
r=rs

= Ṙ+ ȧYn. . . . (11)

Across the interface the normal component of the fluid velocity must be continuous. The difference between the
normal component of the fluid velocity at the interface and the radial velocity u is of second order in a so that
the boundary condition is satisfied by the requirement of continuity of u across the interface. If one chooses a
potential which corresponds to a disturbance which decreases away from the interface in both the inward and
outward directions, the potential then becomes

φ =


φ1 =

R2Ṙ

r
+ b1r

nYn, for r < R;

φ2 =
R2Ṙ

r
+ b2

Yn
rn+1

, for r > R.

. . . (12)

With the condition that continuity is satisfied such that b1 and b2 are found via

− ∂φ1
∂r

∣∣∣∣
r=rs

= −∂φ2
∂r

∣∣∣∣
r=rs

= Ṙ+ ȧYn. . . . (13)

To find b1 and b2

Solving first the velocity potential

−∂φ1
∂r

=
R2Ṙ

r2
− nb1rn−1Yn = Ṙ+ ȧYn,

and evaluating at r = rs from Eq. 13, we have that

−∂φ1
∂r

∣∣∣∣
r=rs

=
R2Ṙ

(R+ aYn)2
− nb1(R+ aYn)n−1Yn = Ṙ+ ȧYn.

Rearranging for b1, we find at O(ε),

b1 = − 1

nYn(R+ aYn)n+1

((
Ṙ+ ȧYn

) (
R2 + 2RaYn + a2Y 2

n

)
−R2Ṙ

)
= − 1

nYnRn+1

(
2RṘaYn + ȧYnR

2+
)

+O
(
ε2
)

= − 1

nRn−1

(
ȧ+ 2a

Ṙ

R

)
+O

(
ε2
)
.

. . . (14)

Similarly for the potential

−∂φ2
∂r

=
R2Ṙ

r2
+ (n+ 1)b2r

−(n+2)Yn = Ṙ+ ȧYn,

and evaluating at r = rs from Eq. 13, we have that

−∂φ2
∂r

∣∣∣∣
r=rs

=
R2Ṙ

(R+ aYn)2
+ (n+ 1)b2(R+ aYn)−(n+2)Yn = Ṙ+ ȧYn.

Rearranging for b2, we find at O(ε),

b2 =
(R+ aYn)n

(n+ 1)Yn

((
Ṙ+ ȧYn

) (
R2 + 2RaYn + a2Y 2

n

)
−R2Ṙ

)
=

Rn

(n+ 1)Yn

(
2RṘaYn + ȧYnR

2
)

+O
(
ε2
)

=
Rn+2

(n+ 1)

(
ȧ+ 2a

Ṙ

R

)
+O

(
ε2
)
.

. . . (15)
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Thus we have that upon substitution into Eq. 12, the potential

φ =


φ1 =

R2Ṙ

r
− rn

nRn−1
Yn

(
ȧ+ 2a

Ṙ

R

)
, for r < R;

φ2 =
R2Ṙ

r
+

Rn+2

(n+ 1)rn+1
Yn

(
ȧ+ 2a

Ṙ

R

)
, for r > R,

. . . (16)

is indeed valid at O(ε) which verifies (4) and (5).

Bernoulli’s Equation

Plesset then proceeds to use Bernoulli’s [17] equation A,

p = P (t) + ρ

[
∂φ

∂t
− 1

2
|∇φ|2

]
, . . . (17)

to evaluate the pressure on either side of the interface surface. Thus, if p1 is the pressure at the interface in region
1 and p2 is the pressure at the interface in region 2, we have

p1 = P1(t) + ρ1

[
∂φ1
∂t
− 1

2

(
∂φ1
∂r

)2
]
r=rs

. . . (18)

and

p2 = P2(t) + ρ2

[
∂φ2
∂t
− 1

2

(
∂φ2
∂r

)2
]
r=rs

. . . . (19)

P1(t) and P2(t) are the constants of the spatial integration of the equation of motion which lead to the Bernoulli
integral; P2(t) has the further significance of being the pressure at infinity.

Evaluate
∂φ

∂t
and

∂φ

∂r
up to O(ε)

We next proceed to prove the quantities found in (8), (9) and (10). Taking the potential

φ1 =
R2Ṙ

r
− rn

nRn−1
Yn

(
ȧ+ 2a

Ṙ

R

)
,

we evaluate
∂φ1
∂t

term by term.

The first term up to O(ε) is:

1

r

∂

∂t

(
R2Ṙ

)
r=rs

=
1

R+ aYn

d

dt

(
R2Ṙ

)
= R−1

(
1 +

aYn
R

)−1
d

dt

(
R2Ṙ

)
=

1

R

d

dt

(
R2Ṙ

)
− aYn

R2

d

dt

(
R2Ṙ

)
+O

(
ε2
)

= 2Ṙ2 +RR̈− aYn

(
2
Ṙ2

R
+ R̈

)
+O

(
ε2
)
.

. . . (20)

The second term up to O(ε) is:

−r
nYn
n

∂

∂t

(
ȧ

Rn−1

)
r=rs

= − (R+ aYn)nYn
n

(
ä

Rn−1
− (n− 1)

ȧ

Rn

)
= −R

nYn
n

(
ä

Rn−1
− (n− 1)Ṙ

ȧ

Rn

)
+O

(
ε2
)

=
Yn
n

(
(n− 1)ȧṘ− äR

)
+O

(
ε2
)
.

. . . (21)

5



The third term up to O(ε) is:

−2Ynr
n

n

∂

∂t

( a

Rn
Ṙ
)
r=rs

= −2Yn(R+ aYn)n

n

(
ȧ

Rn
Ṙ− n a

Rn+1
ṘṘ+

a

Rn
R̈

)
= −2YnR

n

n

(
ȧ

Rn
Ṙ− n a

Rn+1
Ṙ2 +

a

Rn
R̈

)
+O

(
ε2
)

=
2Yn
n

(
na
Ṙ2

R
− ȧṘ− aR̈

)
+O

(
ε2
)
.

. . . (22)

Similarly, taking the potential

φ2 =
R2Ṙ

r
+

Rn+2

(n+ 1)rn+1
Yn

(
ȧ+ 2a

Ṙ

R

)
,

we evaluate
∂φ2
∂t

term by term.

The first term up to O(ε) is:

1

r

∂

∂t

(
R2Ṙ

)
r=rs

=
1

R+ aYn

d

dt

(
R2Ṙ

)
= R−1

(
1 +

aYn
R

)−1
d

dt

(
R2Ṙ

)
=

1

R

d

dt

(
R2Ṙ

)
− aYn

R2

d

dt

(
R2Ṙ

)
+O

(
ε2
)

= 2Ṙ2 +RR̈− aYn

(
2
Ṙ2

R
+ R̈

)
+O

(
ε2
)
.

. . . (23)

The second term up to O(ε) is:

Yn
(n+ 1)rn+1

∂

∂t

(
ȧRn+2

)
r=rs

=
Yn

(n+ 1)(R+ aYn)n+1

(
äRn+2 + (n+ 2)ȧRn+1Ṙ

)
=

Yn
(n+ 1)Rn+1

(
äRn+2 + (n+ 2)ȧRn+1Ṙ

)
+O

(
ε2
)

=
Yn
n+ 1

(
äR+ (n+ 2)ȧṘ

)
+O

(
ε2
)
.

. . . (24)

The third term up to O(ε) is:

2Yn
(n+ 1)rn+1

∂

∂t

(
Rn+1aṘ

)
r=rs

=
2Yn

(n+ 1)(R+ aYn)n+1

(
(n+ 1)ṘRnaṘ+ · · ·

· · ·+Rn+1ȧṘ+Rn+1aR̈

)
+O

(
ε2
)

=
2Yn

(n+ 1)

(
(n+ 1)a

Ṙ2

R
+ ȧṘ+ aR̈

)
+O

(
ε2
)
.

. . . (25)

Upon adding these three terms together for both φ1 and φ2, we obtain up to O(ε)

∂φ1
∂t

∣∣∣∣
r=rs

=
1

R

d

dt

(
R2Ṙ

)
− aYn

R2

d

dt

(
R2Ṙ

)
− ä

n
RYn + · · ·

· · ·+ n− 3

n
ȧṘYn −

2a

n

d2R

dt2
Yn + 2a

Ṙ2

R
Yn +O

(
ε2
)
;

. . . (26)

∂φ2
∂t

∣∣∣∣
r=rs

=
1

R

d

dt

(
R2Ṙ

)
− aYn

R2

d

dt

(
R2Ṙ

)
+

ä

n+ 1
RYn + · · ·

· · ·+ n+ 4

n+ 1
ȧṘYn +

2a

n+ 1

d2R

dt2
Yn + 2a

Ṙ2

R
Yn +O

(
ε2
)
;

. . . (27)
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(
∂φ1
∂r

)2
∣∣∣∣∣
r=rs

'
(
∂φ2
∂r

)2
∣∣∣∣∣
r=rs

' Ṙ2 + 2ȧṘYn +O
(
ε2
)
. . . . (28)

These are the quantities found in (8), (9) and (10). Simplified, we have

∂φ1
∂t

∣∣∣∣
r=rs

= RR̈+ 2Ṙ2 +
Yn
n

(
(n− 3)ȧṘ− (n+ 2)aR̈− äR

)
+O

(
ε2
)
;

∂φ2
∂t

∣∣∣∣
r=rs

= RR̈+ 2Ṙ2 +
Yn
n+ 1

(
(n+ 4)ȧṘ+ äR− (n− 1)aR̈

)
+O

(
ε2
)
;(

∂φ1
∂r

)2
∣∣∣∣∣
r=rs

'
(
∂φ2
∂r

)2
∣∣∣∣∣
r=rs

' Ṙ2 + 2ȧṘYn +O
(
ε2
)
.

. . . (29)

It may be noted that while the components of velocity perpendicular to the radial velocity are of first order, their

contributions to

(
∂φ

∂r

)2

rs

are of second order and are therefore to be neglected.

Equation of motion up to O(ε)

The pressures at the interface are connected by the relation

p2 = p1 − σ
(

1

R′
+

1

R′′

)
,

where R′ and R′′ are the principle radii of curvature of the interface and σ is the surface tension. To O(ε) Lamb [16]

obtains
1

R′
+

1

R′′
=

2

R
+

(n− 1)(n+ 2)

R2
aYn +O

(
ε2
)
,

so that

p2 = p1 −
2σ

R
− (n− 1)(n+ 2)

R2
σaYn +O

(
ε2
)
. . . . (30)

We proceed further, and follow Plesset’s line of reasoning from Eq. 26, 27 and 28. The terms in this relation
between p2 and p1 which are independent of Yn give the equation of motion for the unperturbed interface now
known as the Rayleigh-Plesset Equation:

P2 + ρ2

[
1

R

d

dt
(R2Ṙ)− 1

2
Ṙ2

]
= P1 + ρ1

[
1

R

d

dt
(R2Ṙ)− 1

2
Ṙ2

]
− 2σ

R

2Ṙ2 +RR̈− 1

2
Ṙ2 =

P1 − P2 −
2σ

R
ρ2 − ρ1

RR̈+
3

2
Ṙ2 =

P1 − P2 −
2σ

R
ρ2 − ρ1

.

. . . (31)

The terms proportional to Yn in Eq. 30 give

ρ2

[
− a

R2

d

dt
(R2Ṙ) +

ä

n+ 1
R+

n+ 4

n+ 1
ȧṘ+

2a

n+ 1

d2R

dt2
+ 2a

Ṙ2

R
− ȧṘ

]
= · · ·

· · · = ρ1

[
− a

R2

d

dt
(R2Ṙ)− ä

n
R+

n− 3

n
ȧṘ− 2a

n

d2R

dt2
+ 2a

Ṙ2

R
− ȧṘ

]
− · · ·

· · · − (n− 1)(n+ 2)

R2
σa.

. . . (32)
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Rearranging we have

ä

(
R

n+ 1
ρ2 +

R

n
ρ1

)
+ ȧ

(
n+ 4

n+ 1
Ṙρ2 −

n− 3

n
Ṙρ1 − (ρ2 − ρ1)Ṙ

)
+ · · ·

· · ·+ a

(
2

n+ 1
R̈ρ2 +

2

n
R̈ρ1 + (ρ2 − ρ1)

(
2
Ṙ2

R

)
− (ρ2 − ρ1)

(
2
Ṙ2

R
+ R̈

)
+ · · ·

· · ·+ σ(n− 1)(n+ 2)

R2

)
= 0.

. . . (33)

Combining the fractions gives us

ä

(
nρ2 + ρ1(n+ 1)

n(n+ 1)
R

)
+ ȧ

(
n(n+ 4)ρ2 − (n− 3)(n+ 1)ρ1 − n(n+ 1)(ρ2 − ρ1)

n(n+ 1)
Ṙ

)
+ · · ·

· · ·+ a

(
2nρ2 + 2(n+ 1)ρ1 − n(n+ 1)(ρ2 − ρ1)

n(n+ 1)
R̈+

σ(n− 1)(n+ 2)

R2

)
= 0.

. . . (34)

Further simplifying the numerators, it follows that

ä

(
nρ2 + (n+ 1)ρ1

n(n+ 1)
R

)
+ ȧ

(
3(nρ2 + (n+ 1)ρ1)

n(n+ 1)
Ṙ

)
+ · · ·

· · ·+ a

(
n(1− n)ρ2 + (n+ 1)(n+ 2)ρ1

n(n+ 1)
R̈+

σ(n− 1)(n+ 2)

R2

)
= 0.

. . . (35)

Final Result

Dividing through by
nρ2 + (n+ 1)ρ1

n(n+ 1)
R, we finally arrive at

ä+
3Ṙ

R
ȧ−Ana = 0,

where

An =
R̈
(
n(n− 1)ρ2 − (n+ 1)(n+ 2)ρ1

)
R
(
nρ2 + (n+ 1)ρ1

) − ω2
n;

ω2
n =

n(n− 1)(n+ 1)(n+ 2)σ(
nρ2 + (n+ 1)ρ1

)
R3

.

This is the differential equation for a from which stability conditions may be deduced, since coined Bell-Plesset
Instability, [5,8] and proves Plesset’s result in (13) and (14).

8



III My Approach to Include Viscosity
Bernoulli’s equation including viscosity, assuming zero vorticity from (A), is

P1(t) + ρ1

[
∂φ1
∂t
− 1

2

(
∂φ1
∂r

)2

− ν1
r2

(
∂

∂r

(
r2
∂φ1
∂r

)
− 2φ1

)]
r=rs

= · · ·

· · · = P2(t) + ρ2

[
∂φ2
∂t
− 1

2

(
∂φ2
∂r

)2

− ν2
r2

(
∂

∂r

(
r2
∂φ2
∂r

)
− 2φ2

)]
r=rs

.

. . . (36)

Thus we need to evaluate[
1

r2

(
∂

∂r

(
r2
∂φ1
∂r

)
− 2φ1

)]
r=rs

= −2Ṙ

R
− Yn
nR2

(
(n− 1)(n+ 2)ȧR+ · · ·

· · ·+ 2
(
n2 − 2n− 2

)
aṘ
)

+O
(
ε2
)

;[
1

r2

(
∂

∂r

(
r2
∂φ2
∂r

)
− 2φ2

)]
r=rs

= −2Ṙ

R
+

Yn
(n+ 1)R2

(
(n− 1)(n+ 2)ȧR+ · · ·

· · ·+ 2
(
n2 + 4n+ 1

)
aṘ
)

+O
(
ε2
)
.

. . . (37)

We substitute the values obtained previously independent of Yn to arrive at

P1 + ρ1

 1

R

d

dt
(R2Ṙ)− 1

2
Ṙ2 + ν1

(
2Ṙ

R

) = · · ·

· · · = P2 + ρ2

 1

R

d

dt
(R2Ṙ)− 1

2
Ṙ2 + ν2

(
2Ṙ

R

)− 2σ

R
.

. . . (38)

This gives us the correct Rayleigh-Plesset equation

RR̈+
3

2
Ṙ2 +

P2 − P1

ρ2 − ρ1
+

2σ

(ρ2 − ρ1)R
+

2Ṙ

R

(
µ2 − µ1

ρ2 − ρ1

)
= 0, . . . (39)

suggesting that the discrepancy between the two approaches only occurs at higher orders.

9



IV Comparison Between Plesset and Amendt
Drawing comparisons in the case of vanishing surface tension and viscosity, we have from both treatments of
Plesset [4–7] and Amendt [13] respectively,

ä+ ȧ
3Ṙ

R
+ a

(
R̈

R
A3 +

S1
R3

)
= 0,

ä+ ȧ
3Ṙ

R
A2 + a

(
R̈

R
A1 +

S1
R3

)
= 0,

. . . (40)

where

A3 =
(n+ 1)(n+ 2)ρ1 − n(n− 1)ρ2

nρ2 + (n+ 1)ρ1
. . . . (41)

The term responsible for Bell-Plesset instability is ȧ. For the case of a bubble, we can neglect ρ1, where in the
following as ρ1 → 0

A1 = −(n− 1);

A2 = 1;

A3 = −(n− 1);

S1 =
(n− 1)(n+ 1)(n+ 2)σ

ρ2R3
;

V1 = 0;

V2 = 0;

V3 = 0.

. . . (42)

This gives us, neglecting S,

ä+ ȧ
3Ṙ

R
− a(n− 1)

R̈

R
= 0, . . . (43)

for both velocity potentials. However, for a liquid droplet with a surrounding gas, contrasting behaviour arises. To
see this, as ρ2 → 0

A1 = (n− 1);

A2 = 0;

A3 = (n+ 2);

S1 =
n(n− 1)(n+ 2)σ

ρ1R3
;

V1 = 0;

V2 = 0;

V3 = 0.

. . . (44)

Neglecting S, Plesset’s reduces to

ä+ ȧ
3Ṙ

R
+ a(n+ 2)

R̈

R
= 0, . . . (45)

and Amendt’s reduces to

ä+ a(n− 1)
R̈

R
= 0. . . . (46)

Plesset made the claim that an instability exists even in the Rayleigh-Taylor stable case when R̈ > 0, provided
that

(2n+ 1)RR̈ <
3Ṙ2

2
. . . . (47)

Contrary to this, (46) shows that the middle term responsible for growth in the limit of large ρ1 vanishes.

We can therefore conclude that an expanding
(
Ṙ > 0

)
and accelerating

(
R̈ > 0

)
, high density (ρ1 � ρ2) bubble,

is not unstable within the limits of this perturbation, and in this limit, compressibility need not be considered.

10



V Stability Conditions

To begin solving the equation analytically we can make the substitution

a = αexp

[
−3

2

∫ t

t0

Ṙ(t′)

R(t′)
dt′

]
= α

(
R0

R

) 3
2
, . . . (48)

where it follows that

ȧ =

(
R0

R

)3
2
(
α̇− 3Ṙ

2R
α

)
;

ä =

(
R0

R

)3
2
(
α̈− 3Ṙ

R
α̇+ α

((
9

4
+

3

2

)
Ṙ2

R
− 3R̈

2R

))
.

. . . (49)

This gives us the new relationship
α̈+Q(t)α = 0, . . . (50)

where, including surface tension,

Q(t) =
S1
R3

+
Ṙ2

R2
A2

(
3

2
− 9

4
A2

)
+
R̈

R

(
A1 −

3

2
A2

)
. . . . (51)

In terms of stability1 conditions, we have stability when Q(t) < 0, and instability when Q(t) > 0.

Case 1: ρ2 � ρ1

The function Q(t) simplifies to

Q(t) =
(n− 1)(n+ 1)(n+ 2)σ

ρ2R3
− 3Ṙ2

4R2
− R̈

R

(
n+

1

2

)
. . . . (52)

Case 2: ρ1 � ρ2

The function Q(t) simplifies to

Q(t) =
n(n− 1)(n+ 2)σ

ρ1R3
+
R̈

R
(n− 1). . . . (53)

VI Solution (Incompressible)
Collapsing Gas

The solution to (50) is obtained via a WKBJ approximation, outlined in (C), which gives us

a ' a0R−
1
4 cos

(
λc

∫ t

R−
5
2 dt′

)
, R→ 0, . . . (54)

with the boundary conditions applied a(0) = a0 and ȧ(0) = ȧ0 respectively. Fig. (2) illustrates the dominant

proportionality of the amplitude a ∝ R−
1
4 as R→ 0.

1Stability (or instability) in this case refers to an exponential decrease (or increase) in the amplitude of the disturbance.
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Figure 2: a ∝ R−
1
4 cos

(
λc
∫ tR−

5
2 dt′

)
and oscillates with increasing frequency as R → 0. At approximately R = 2 onwards, the

amplitude a→ 0.

VII Future Investigation

The approximate solution obtained in (VI) offers us insight into the unstable behaviour during the collapse,
visualised in Figure (2). As expected, a large bubble would be influenced by surface tension effects, tending

towards stability. Conversely, a smaller bubble would experience chaotic instability as it collapses.

Spherical compressibility has been shown to stabilise the oscillations of a collapsing bubble, [13] thus in future
analysis I feel the incompressible case (55) to show the most merit. Potentially the compressible terms can be
neglected in the region we propose within the perturbation of the interface.

Consideration to viscous effects in an incompressible regime appears to be the best direction to proceed in. The
viscous terms here show the same proportionality to those approximated in Prosperitti’s [11] work, suggesting
close validity in agreement. As was stated before, Prosperitti’s work agrees with the results for the frequency of
oscillation ω0 and the decay constant b0 obtained by Lamb, [16] in contrast to the Atwood numbers V1 and V2

obtained in my own approach.

The main progress made is verification of Plesset [5], Amendt [13], Fisher [10] and Bell’s [8] results, of which a
determination of the correct potential to use in the specific case of a collapsing bubble was found. A discrepancy
in agreement between the viscous correction of Prosperitti’s and my own was discovered; thus future verification
of Prosperitti’s result is the next course of action. Once this has been achieved, direct comparison can be made,
and plans to solve both numerically to compare against real lab data can help to assess validity of both claims.

Chandrasekar [18] also performed an analysis in a similar vein as Prosperitti, and I plan to review this approach
and determine its adaptability to the derivation obtained here. The core of his work involved the mechanics of
spheres, and their application to astrophysical problems. Sharing this interest, I hope to determine feasibility of
this analysis towards the surface of a star, and the following consequences of the collapse prior to supernovae. [19]

Little investigation seems to have been carried out concerning the stability of the photosphere and chromosphere
under collapse. Should this exceed the scope of my initial investigation too far however, it may be best to
consider the base mechanics at play and leave this idea for future work.

Incompressible Bell-Plesset Instability with Viscous Terms and Surface Tension

ä+ ȧ

(
3Ṙ

R
A2 +

V1

R2

)
+ a

(
ṘV2

R3
+
R̈A1

R
+

S1
R3

)
= 0. . . . (55)
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A Proof of Bernoulli’s Compressible Equation

Here we demonstrate Bernoulli’s equation incorporating compressibility and viscosity. [17,20] The momentum
equation is

ρ

[
∂u

∂t
+ (u · ∇)u

]
= ∇ · σ + ρg, . . . (56)

where
σ = −pI + 2µ

(
e + Ω

)
+ λ(∇ · u)I, . . . (57)

and

e =
1

2

(
∇u +∇uT

)
, Ω =

1

2

(
∇u−∇uT

)
. . . . (58)

Using the vector identity

(u · ∇)u =
1

2
∇ |u|2 − u× (∇× u) . . . (59)

with vorticity ω = ∇× u, we have

ρ

[
∂u

∂t
+

1

2
∇ |u|2

]
−∇ · σ − ρg = u× ω. . . . (60)

If all body forces are conservative, then g = −∇Φ. For a Compressible, Newtonian fluid with dynamic viscosity µ,

∇ · σ = ∇ ·
[
− pI + µ

(
∇u +∇uT

)
+ λ(∇ · u)I

]
=

∂

∂xj

[
−pδij + µ

(
∂ui
∂xj

+
∂uj
∂xi

)
+ λ

∂uk
∂xk

δij

]
= − ∂p

∂xi
+ µ

∂2ui
∂xj ∂xj

+ µ
∂

∂xi

∂uj
∂xj

+ λ
∂

∂xi

∂uk
∂xk

= −∇p+ µ∇2u + µ∇(∇ · u) + λ∇(∇ · u).

. . . (61)

Inserting (61) into (60) while neglecting both Ω and λ = −2

3
µ, gives us

ρ

[
∂u

∂t
+

1

2
∇ |u|2

]
+∇p− µ∇2u− µ∇(∇ · u) + ρ∇Φ = u× ω, . . . (62)

where ν =
µ

ρ
is the kinematic viscosity. If the flow is irrotational, then ω = 0 and u = −∇φ using Helmholtz

decomposition. Substituting, we have

ρ

[
−∂(∇φ)

∂t
+

1

2
∇ |∇φ|2

]
+∇p+ µ∇2(∇φ) + µ∇(∇ · (∇φ)) + ρ∇Φ = 0. . . . (63)

All operations are linear, so can be interchanged. We then integrate to arrive at the relation

P (t) = ρ

[
−∂φ
∂t

+
1

2
|∇φ|2

]
+ p+ µ∇2φ+ µ∇2φ+ ρΦ,

⇔ P (t) = −ρ
[
∂φ

∂t
− 1

2
|∇φ|2

]
+ p+ 2µ∇2φ+ ρΦ.

. . . (64)

This becomes Bernoulli’s equation including viscous terms

p = P (t)− 2µ∇2φ+ ρ

[
∂φ

∂t
− 1

2
|∇φ|2 − Φ

]
. . . . (65)
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B Viscous Terms

The following is the solution to the laplacian of φ, up to order O(ε).[
1

r2
∂

∂r

(
r2
∂φ1
∂r

)
− 2φ1

r2

]
r=rs

= −2Ṙ

R
− (n+ 2)(n− 1)Yn

nR2

(
ȧR− aṘ

)
+O

(
ε2
)
;[

1

r2
∂

∂r

(
r2
∂φ2
∂r

)
− 2φ2

r2

]
r=rs

= −2Ṙ

R
+

Yn
(n+ 1)R2

(
n(n+ 3)aF2R+ · · ·

· · ·+ 2
(
n2 + 4n+ 1

)
aṘ+ (n+ 2)(n− 1)ȧR

)
+O

(
ε2
)
.

. . . (66)

C WKBJ Approximation

C.1 Collapsing Gas (Incompressible)

By the WKBJ approximation we can solve for the case of a collapsing bubble,

α̈+Q(t)α = 0, where Q(t) =
(n− 1)(n+ 1)(n+ 2)σ

ρ2R3
− 3Ṙ2

4R2
− R̈

R

(
n+

1

2

)
. . . . (67)

The radius of the unperturbed bubble is given by

RR̈+
3

2
Ṙ2 +

P2(t)− P1(t)

ρ2
+

2σ

ρ2R
= 0. . . . (68)

where P1(t) is the pressure inside the bubble, and P2(t) is the pressure a distance from the bubble. We may also
write this as

d

dt

(
R3Ṙ2

)
= 2R2Ṙ

(
P1(t)− P2(t)

ρ2
− 2σ

ρ2R

)
. . . (69)

which integrates, when P1(t)− P2(t) is a constant, to give

2πρ2

(
R3Ṙ2 −R3

0Ṙ
2
0

)
=

4π

3
(P1(t)− P2(t))

(
R3 −R3

0

)
− 4πσ

(
R2 −R2

0

)
. . . (70)

where R0 is the cavity radius and Ṙ is its radial velocity at time t = t0. From (70) we have

Ṙ2 = O
(
R−1

)
+
R3

0

R3

(
Ṙ2

0 +
2p

3ρ2
+

2σ

ρ2R0

)
, . . . (71)

where p = P2(t)− P1(t) > 0 in this case. The radial acceleration, R̈ is determined from (69)

R̈ = −3Ṙ2

2R
+

p

ρ2R
− 2σ

ρ2R2
. . . . (72)

Substituting (71) and (72) into (67) and neglecting surface tension,

Q(t) = −3R3
0

4R5

(
Ṙ2

0 +
2p

3ρ2
+

2σ

ρ2R0

)
−
(
n+ 1

2

)
R

(
−3R3

0

2R4

(
Ṙ2

0 +
2p

3ρ2
+

2σ

ρ2R0

)
+

p

ρ2R
− 2σ

ρ2R2

)
. . . . (73)

The function Q(t) then becomes

Q(t) ' 3nR3
0

2R5

(
Ṙ2

0 +
2p

3ρ2
+

2σ

ρ2R0

)
, R→ 0, . . . (74)

neglecting terms smaller than O
(
R−5

)
, and simplifies to

Q(t) ' nc2

R5
, . . . (75)
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where c contains the constant terms. We can thus proceed with the WKBJ approximation for λ � 1 where we
note that Q(t) > 0 in (75). The procedure is constructed via

α̈+ λ2Q(t)α = 0, H = H0 + λ−1H1 +O
(
λ−2

)
,

α = eλH , α̇ = λḢeλH , α̈ =
(
λḦ + λ2Ḣ2

)
eλH .

. . . (76)

At O(1)

Ḣ2
0 +Q(t) = 0 ⇒ Ḣ0 = ±i

√
Q(t)

H0 = ±i
∫ t√

Q(t′)dt′ + k0.
. . . (77)

At O
(
λ−1

)
2Ḣ0Ḣ1 + Ḧ0 = 0 ⇒ Ḣ1 = −1

2

Ḧ0

Ḣ0

= −1

2

d

dt

(
lnḢ0

)
H1 = −1

2
lnḢ0 + k1

H1 = −1

4
lnQ(t) + k1

. . . (78)

Therefore the function H becomes

H = ±i
∫ t√

Q(t′)dt′ − 1

4
λ−1lnQ(t) + k,

α = eλH = exp

{
± iλ

∫ t√
Q(t′)dt′ − 1

4
lnQ(t) + k

}
' k × exp

{
− 1

4
lnQ(t)

}
exp

{
± iλ

∫ t√
Q(t′)dt′

}
' k ×Q(t)−

1
4 exp

{
± iλ

∫ t√
Q(t′)dt′

}
.

. . . (79)

The general solution is then

α ' kQ(t)−
1
4 exp

{
± iλ

∫ t√
Q(t′)dt′

}
' kn

1
4 c

1
2R

5
4 exp

{
± iλcn

1
2

∫ t

R−
5
2 dt′

}
' n

1
4 c

1
2R

5
4

{
Asin

(
iλcn

1
2

∫ t√
Q(t′)dt′

)
+Bcos

(
iλcn

1
2

∫ t√
Q(t′)dt′

)}
, R→ 0.

. . . (80)

The distortion amplitude is then given by

a ' kn
1
4 c

1
2R−

1
4 exp

{
± iλcn

1
2

∫ t

R−
5
2 dt′

}
, R→ 0

' n
1
4 c

1
2R−

1
4

{
Asin

(
λcn

1
2

∫ t

R−
5
2 dt′

)
+Bcos

(
λcn

1
2

∫ t

R−
5
2 dt′

)}
, R→ 0.

. . . (81)

If we impose the boundary conditions of a small amplitude at time t = 0, a(0) = a0 we find that B = a0. Initially

the amplitude velocity is reasonably satisfied by ȧ(0) = ȧ0, which gives us A = ȧ0
λ R
− 1

4 . The particular solution in
this case is given by

a ' a0R−
1
4 cos

(
λcn

1
2

∫ t

R−
5
2 dt′

)
+
ȧ0
λ

sin

(
λcn

1
2

∫ t

R−
5
2 dt′

)
, R→ 0

' a0R−
1
4 cos

(
λcn

1
2

∫ t

R−
5
2 dt′

)
, R→ 0.

. . . (82)
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D Mathematica Code

D.1 M. S. Plesset (1954)
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D.2 G. I. Bell (1951) and H. N. Fisher (1982)
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D.3 P. Amendt (2003) and H. Lin (2002)
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