
Bayesian Machine Learning

Stephen Charles

Final Project
The University of Bath

May 2022

Abstract

The final piece of assessed coursework involves the evaluation of Bayesian modelling
methods on a real multivariate regression task. The guiding objectives are to derive a
good predictor for data derived from an “energy efficiency” data set, and to estimate which
of the input variables are relevant for prediction. In particular, the exercise focuses on
approximating (and averaging over) posterior distributions using the Hamiltonian Monte
Carlo (HMC), Variational Inference (VI), and Gaussian Processes.

Experiments will be based mainly on existing (or supplied) analytic code and techniques
you have already learned. You will of course need to write all the relevant code in the
relevant cells of the Jupyter Notebook to process the data, apply the methods appropriately,
extend them in places, and ultimately calculate and output the necessary results. A key
part of the assessment is to compile, present and critique all those results effectively within
an “individual project report” document. For this exercise, your code in the Jupyter
Notebook will also be auto-marked. Marks will be awarded based on the report, code,
and (potentially) group contributions.

Contents

1 Exploratory Analysis 1
1.1 Correlation . 2
1.2 Ordinary Least Squares . 4

2 Bayesian Linear Regression 6
2.1 Type-II Maximum Likelihood . 6
2.2 Variational Inference . 9

3 Verify HMC on a 2D Gaussian 12

4 Apply HMC to the Linear Regression Model 16

5 Apply GP to the Linear Regression Model 21
5.1 Default Kernel . 22
5.2 Custom RBF Kernel . 23
5.3 Custom RBF Kernel + White Noise . 24
5.4 Gaussian Process Bayesian Neural Network 25
5.5 Approaches Compared . 26

6 Results 27

7 Conclusion 31

Bibliography 32

ii

List of Figures

1.1 The training and test sets for the target variable Heating Load. 1
1.2 The correlation between heating load and the other dependent variables. 2
1.3 The correlation between all features. 3
1.4 The correlation between heating load and the other dependent variables.

x3, x6 and x8 have the highest p-values, which suggests those are the least
important to predicting our target variable. 4

1.5 The predictions against the training and test set for OLS. 5

2.1 For clarity, the posterior is shown in log space. The most probable values
were α = 0.117 and β = 0.108. 7

2.2 The predictions against the training and test set for BLR. 8
2.3 For clarity, the posterior is shown in log space. The expected values were

α = 0.012 and β = 0.110. 10
2.4 The predictions against the training and test set for VI. 11

3.1 A 2D Gaussian with mean 0 and variance 1. 13
3.2 HMC Distribution fitted. 13
3.3 The acceptance rate over iterations. 14
3.4 The convergence over 5000 samples. 14
3.5 Verification of the HMC model to a simple Gaussian. Both histograms

demonstrate a typical Gaussian distribution across the samples accepted. 15

4.1 The predictions against the training and test set for HMC LR. 18
4.2 Acceptance rates for HMC LR. 19
4.3 The posterior for HMC LR. The best α was 0.014 and β 0.108. 19
4.4 The posterior HMC samples fitted to BLR. The data is clearly non-gaussian,

verified by the accepted samples. 20
4.5 The optimal values of the unknown terms for HMC LR. 20

5.1 The predictions against the training and test set for GP (Default Kernel). 22
5.2 The predictions against the training and test set for GP (Custom RBF

Kernel). 23
5.3 The predictions against the training and test set for GP (Custom RBF +

WN Kernel). 24
5.4 The predictions against the training and test set for the BNN. 25

6.1 The predictions against the training set for all models. 28
6.2 The predictions against the test set for all models. 29
6.3 The posterior for BLR, VI and HMC with best α and β values. 30

iii

List of Tables

1.1 The RMSE and MAE of the train and test sets for OLS. 4

2.1 The most probable values for the Type-II Maximum Likelihood. 7
2.2 The RMSE and MAE of the train and test sets for BLR. 8
2.3 The most probable values for VI. 10
2.4 The RMSE and MAE of the train and test sets for VI. 10

3.1 The values used to obtain HMC results. 12

4.1 The hyper-parameters used to obtain HMC LR results. 16
4.2 The optimal values of the unknown terms for HMC LR. 18
4.3 The RMSE and MAE of the train and test sets for HMC LR. 18

5.1 The RMSE and MAE of the training set for GP. 26
5.2 The RMSE and MAE of the test set for GP. 26

6.1 The MAE for all fitted and evaluated models. 27
6.2 The RMSE for all fitted and evaluated models. 27

iv

List of Code

2.1 The log marginal function. 7
2.2 The efficient woodbury inverse log marginal function. 8
3.1 Designed functions energy_func and energy_grad 13
4.1 Designed functions energy_func and energy_grad for HMC LR. 17
5.1 Default Kernel for the Gaussian Process. 22
5.2 Custom RBF Kernel for the Gaussian Process. 23
5.3 Custom RBF-WN Kernel for the Gaussian Process. 24

v

Chapter 1

Exploratory Analysis

The energy efficiency data set is distributed by the University of Oxford, and available for
download at the UCI Machine Learning Repository. It is a multivariate dataset containing
768 examples, comprising of 1 constant bias and 8 input variables x0, x1, x2, · · · , x8, where
x0 is the constant bias, and the rest represent basic architectural parameters for buildings.

For the purposes of modeling, we chose to pre-process the data to standardise the inputs
to have 0 mean and a standard deviation of 1. The const column was preserved to be 1.
The data was split into two sets, ’ee-train.csv’ for the training stage, and ’ee-test.csv’ for
the testing stage.

Previously, analysis (Tsanas and Xifara, 2012) for this dataset used both random forest
and classical linear regression models, which had a mean average error of 0.51 and 1.42
respectively.

Figure 1.1: The training and test sets for the target variable Heating Load.

1

https://archive.ics.uci.edu/ml/datasets/energy+efficiency

CHAPTER 1. EXPLORATORY ANALYSIS 2

1.1 Correlation
The data appears non-Gaussian, thus we used the correlation coefficient (Spearman) as a
metric to determine the association between the target variable and the dependants. In
a sense we can gauge an estimation of the linearity using this method. Plots shown in
Figure 1.2 were computed to illustrate the correlation between the target variable Heating
Load and the 8 input variables.

Figure 1.2: The correlation between heating load and the other dependent variables.

The least correlated and thus least important in terms of their feature importance to the
model were Orientation, Glazing Area and Glazing Area Distribution. Conversely, the
most important appear to be Relative Compactness, Roof Area and Overall Height in this
analysis, in agreement with Tsanas and Xifara (2012).

Figure 1.3 shows a correlation heatmap between all features. Positive and negative
correlation is defined the same as before, corresponding to the colormap indicated by the
colorbar. The final row for Heating Load gives us the same information shown as before
in Figure 1.2.

CHAPTER 1. EXPLORATORY ANALYSIS 3

Figure 1.3: The correlation between all features.

CHAPTER 1. EXPLORATORY ANALYSIS 4

1.2 Ordinary Least Squares
Ordinary Least Squares regression is a method where the coefficients of linear regression
equations can be estimated which describe multiple independent variables and a dependent
variable. Figure 1.4 shows the results of such an approach, and Table 1.1. From the
OLS regression results we can see that the most correlated features are x1, x2, x4 and x5,
corresponding to Relative Compactness, Surface Area, Roof Area and Overall Height, in
agreement with our visual inspection of the correlation.

Table 1.1: The RMSE and MAE of the train and test sets for OLS.

Metric Train Error
RMSE 3.0115517876503617
MAE 2.1306794414069143
Metric Test Error
RMSE 2.8435880167333694
MAE 2.069010093808354

Figure 1.4: The correlation between heating load and the other dependent variables.
x3, x6 and x8 have the highest p-values, which suggests those are the least important to

predicting our target variable.

CHAPTER 1. EXPLORATORY ANALYSIS 5

Figure 1.5: The predictions against the training and test set for OLS.

Chapter 2

Bayesian Linear Regression

Define a standard linear regression model with an unknown coefficient set w.

• w is assumed to have a Gaussian prior N (0, σ2
w), and the precision as α = 1

σ2
w
.

• The problem can be modelled using additive Gaussian noise N (0, σ2
ϵ), and the

precision as β = 1
σ2
ϵ
.

• The unknown hyperparameter set consists of θ = (σ2
w, σ

2
ϵ) = (α, β).

• With observation D, the posterior we want to estimate can be written as p(w, θ|D),
in our case this is y, Heating Load.

2.1 Type-II Maximum Likelihood
The full posterior we require is p(w, θ|D) as defined above, where θ = (σ2

w, σ
2
ϵ) = (α, β).

The Type-II maximum likelihood is used to infer the hyperparameters α and β, and the
posterior in our case for this dataset is

p(w, α, β|y) ≡ p(w|α, β, y)p(α, β|y). (2.1)

The second term cannot be inferred directly, thus to find the most probable alpha and
beta we maximise

p(α, β|y) = p(y|α, β)p(α)p(β)
p(y)

(2.2)

where
α, β = argmax log p(y|α|β). (2.3)

The precision is

Σ = βI + α−1ΦΦT (2.4)

α =
1

σ2
w

(2.5)

β =
1

σ2
ϵ

. (2.6)

6

CHAPTER 2. BAYESIAN LINEAR REGRESSION 7

1 def compute_log_marginal(X, y, alph, beta):
2 """Type 2 maximum liklihood"""
3 cov = 1 / beta * np.identity(X.shape[0]) + np.matmul(alph ** (-1) * X, X.T)
4 return stats.multivariate_normal.logpdf(y, cov=cov, allow_singular=True)

Listing 2.1: The log marginal function.

The log marginal then becomes

1

(2π)
n
2Σ

1
2

exp

(
−1

2
(y − µ)TΣ−1(y − µ)

)
. (2.7)

We wish to maximise the marginal likelihood p(y|α, β) to approximate the most probable
values for α and β. For this, 100 uniformly distributed samples across the range -5 to
0 were iterated over using compute log marginal to determine the most likely values
shown in Figure 2.1 and Table 2.1. The predictions were made via the compute posterior
function. The errors in the train and test sets are displayed in Table 2.2.

Figure 2.1: For clarity, the posterior is shown in log space. The most probable values
were α = 0.117 and β = 0.108.

Table 2.1: The most probable values for the Type-II Maximum Likelihood.

Priors
α 0.01174362845702136
β 0.10836802322189586
log(α) -4.444444444444445
log(β) -2.22222222222222237
Log-Likelihood -1001.4576252255179

CHAPTER 2. BAYESIAN LINEAR REGRESSION 8

1 def compute_log_marginal(PHI, y, alph, s2):
2 '''Compute the log of the marginal likelihood for BLR model.'''
3 def woodbury_inverse(I, U, V):
4 '''Woodbury Identity'''
5 return np.identity(U.shape[0]) - U @ np.linalg.inv(I + V @ U) @ V
6

7 s2 = 1 / s2
8 I = np.identity(PHI.shape[1])
9 U = 1 / (alph * s2) * PHI

10 V = PHI.T
11

12 const = np.log(2 * np.pi) * (len(y) / 2)
13 p1 = -(np.log(np.diagonal(np.linalg.cholesky((s2 * np.identity(PHI.shape[1]) \
14 + (PHI.T @ (alph ** -1 * PHI)))))).sum() \
15 + np.log(np.sqrt(s2)) * (PHI.shape[0] - PHI.shape[1]))
16 p2 = - 0.5 * y.T @ ((1 / s2) * woodbury_inverse(I, U, V)) @ y
17 lgp = const + p1 + p2
18 return lgp

Listing 2.2: The efficient woodbury inverse log marginal function.

Table 2.2: The RMSE and MAE of the train and test sets for BLR.

Metric Train Error
RMSE 3.011551809679529
MAE 2.130668537391788
Metric Test Error
RMSE 2.8063010631019174
MAE 1.9907650699570147

Figure 2.2: The predictions against the training and test set for BLR.

CHAPTER 2. BAYESIAN LINEAR REGRESSION 9

2.2 Variational Inference
Variational Inference is a method for approximating distributions, casting inference as an
optimization problem. The main goal is to find a good proposal distribution Q(θ) which
is the best match for an unknown posterior distribution or objective P(θ). The Kullback-
Leibler divergence is used to analyse similarity between the proposal and posterior, to
determine similarities between both.

In this project, the proposal is given by

Q(w, α, β) = Q(w, β)Q(α), (2.8)

with priors

Q(w) = N (w|0, (αβ)−1) (2.9)
Q(α) = G(α|aα0 , |bα0) = G(α|a, b) (2.10)

Q(β) = G(β|aβ0 , |b
β
0) = G(β|c, d), (2.11)

where

µN = aN
bN

I + XTX (2.12)

ΣN = VNXTy (2.13)
aN = a0 +

K
2

(2.14)
bN = 1

2
b0(

cN
dN

)ΣT
NΣN + Tr(µN) (2.15)

cN = c0 +
N
2

(2.16)
dN = 1

2
d0(||y − xΣN ||2 + ΣT

N(
aN
bN

))ΣN (2.17)

(2.18)

The floats aN , bN , cN , dN give us the hyper-parameters α and β, and are defined by

α = aN
bN

(2.19)

β = cN
dN

. (2.20)

CHAPTER 2. BAYESIAN LINEAR REGRESSION 10

Figure 2.3: For clarity, the posterior is shown in log space. The expected values were
α = 0.012 and β = 0.110.

Table 2.3: The most probable values for VI.

Priors
α 0.011916753508509775
β 0.11026038962261975
log(α) -4.42981001110939
log(β) -2.2049105321553415
Log-Likelihood -1001.4975203139636

Table 2.4: The RMSE and MAE of the train and test sets for VI.

Metric Train Error
RMSE 3.0115518111318993
MAE 2.1306681834494188
Metric Test Error
RMSE 2.8435839397385267
MAE 2.0689828677240825

CHAPTER 2. BAYESIAN LINEAR REGRESSION 11

Figure 2.4: The predictions against the training and test set for VI.

Chapter 3

Verify HMC on a 2D Gaussian

The Hamiltonian Monte Carlo method aims to make the random walk in algorithms more
efficient. The 2D Gaussian proposed is shown in Figure 3.1 with mean 0 and variance 1.
The mathematical formula for this is

f(x, y) = A exp

(
−
(
(x− x0)

2

2σ2
X

+
(y − y0)

2

2σ2
Y

))
. (3.1)

The energy function is calculated via

Σ =

(
σ2
00 σ2

10

σ2
01 σ2

11

)
(3.2)

Σ−1 =
1

σ2
00σ

2
11

(
σ2
11 −σ2

10

−σ2
01 σ2

00

)
(3.3)

xTΣ−1x =
σ2
11x

2
0 − 2σ2

10x1x0 + σ2
00x

2
1

(σ00σ11)2 − (σ01σ10)2
(3.4)

γ = (σ00σ11)
2 − (σ01σ10)

2 (3.5)
∂(xTΣ−1x)

∂x0

= −σ2
11x0

γ
+

σ2
10x1

γ
(3.6)

∂(xTΣ−1x)

∂x1

=
σ2
10x0

γ
− σ2

00x1

γ
. (3.7)

Table 3.1: The values used to obtain HMC results.

Hyper-Parameters
R 5000
L 20
eps 0.36

12

CHAPTER 3. VERIFY HMC ON A 2D GAUSSIAN 13

Figure 3.1: A 2D Gaussian with mean 0 and variance 1.

1 def energy_func(x, covar):
2 """Energy function. Returns Neglogpdf."""
3 return np.negative(stats.multivariate_normal.logpdf(x, cov=covar))
4

5 def energy_grad(x, covar):
6 """Gradient function."""
7 return np.linalg.inv(covar) @ x

Listing 3.1: Designed functions energy_func and energy_grad

Figure 3.2: HMC Distribution fitted.

CHAPTER 3. VERIFY HMC ON A 2D GAUSSIAN 14

Figure 3.3: The acceptance rate over iterations.

Figure 3.4: The convergence over 5000 samples.

CHAPTER 3. VERIFY HMC ON A 2D GAUSSIAN 15

Figure 3.5: Verification of the HMC model to a simple Gaussian. Both histograms
demonstrate a typical Gaussian distribution across the samples accepted.

Chapter 4

Apply HMC to the Linear Regression
Model

The posterior distribution is defined as

p(w|α, β,y) = p(y|w, β, α)p(w|α) (4.1)

The energy function is calculated via

p(y|X, β) =

(√
β√
2π

)n

exp

(
−β

2
(y −Xw)T (y −Xw)

)
(4.2)

p(w|α) =
(√

α√
2π

)m

exp
(
−α

2
wTw

)
(4.3)

L = −
(
n

2
log β − n

2
log 2π − β

2
(y −Xw)T (y −Xw) + · · · (4.4)

· · · m
2
logα− m

2
log 2π − α

2
wTw

)
(4.5)

∂L
∂α

= −m

2α
+

1

2
wTw (4.6)

∂L
∂β

= − n

2β
+

1

2
(y −Xw)T (y −Xw) (4.7)

∂L
∂w

= −β(y −Xw)TX + αwT . (4.8)

Table 4.1: The hyper-parameters used to obtain HMC LR results.

Hyper-Parameters
R 20000
L 100
eps 0.000075

16

CHAPTER 4. APPLY HMC TO THE LINEAR REGRESSION MODEL 17

1 def energy_func_lr(hps, x, y):
2 """Energy function."""
3 alpha = hps[0]
4 beta = hps[1]
5 w = hps[2:]
6 N, M = x.shape
7 a = (N / 2 * np.log(beta)) - (N / 2 * np.log(2*np.pi)) \
8 - beta / 2 * (np.sum((y - x @ w).T @ (y - x @ w)))
9 b = (M / 2 * np.log(alpha)) - (M / 2 * np.log(2*np.pi)) \

10 - (alpha / 2) * (np.sum(w.T @ w))
11 neglgp = - (a + b)
12 return neglgp
13

14 def energy_grad_lr(hps, x, y):
15 """Gradient function returns arr of
16 partial derivatives of the energy function."""
17 alpha = hps[0]
18 beta = hps[1]
19 w = hps[2:]
20 N, M = x.shape
21 grad_alpha = - (M / (2 * alpha)) + (np.sum(w.T @ w) / 2)
22 grad_beta = - (N / (2 * beta)) + (np.sum(((y - x @ w).T @ (y - x @ w))) / 2)
23 grad_w = (alpha * w) + beta * (y - x @ w) @ x
24 g = np.array([grad_alpha, grad_beta] + list(grad_w))
25 return g

Listing 4.1: Designed functions energy_func and energy_grad for HMC LR.

CHAPTER 4. APPLY HMC TO THE LINEAR REGRESSION MODEL 18

Figure 4.1: The predictions against the training and test set for HMC LR.

Table 4.2: The optimal values of the unknown terms for HMC LR.

Optimal Values
α 0.014306838372461161
β 0.10854886876405839
Bias 0.20568049399730945

Table 4.3: The RMSE and MAE of the train and test sets for HMC LR.

Metric Train Error
RMSE 3.018637231485769
MAE 2.160597295563628
Metric Test Error
RMSE 2.852187436445753
MAE 2.103821458477387

CHAPTER 4. APPLY HMC TO THE LINEAR REGRESSION MODEL 19

Figure 4.2: Acceptance rates for HMC LR.

Figure 4.3: The posterior for HMC LR. The best α was 0.014 and β 0.108.

CHAPTER 4. APPLY HMC TO THE LINEAR REGRESSION MODEL 20

Figure 4.4: The posterior HMC samples fitted to BLR. The data is clearly non-gaussian,
verified by the accepted samples.

Figure 4.5: The optimal values of the unknown terms for HMC LR.

Chapter 5

Apply GP to the Linear Regression
Model

A Gaussian Process is stochastic (collection of random variables), where every finite linear
combination of random variables is normally distributed. The Gaussian Process itself is
the joint distribution of all the normally distributed random variables. The prior mean is
assumed to be constant and zero, which we have achieved through our preprocessing step
with StandardScaler.

A note about the kernel choices made for GP:

• RBF - Explains a long term, smooth rising trend.
• WhiteKernel - Explains the correlated noise components.
• ExpSineSquared - Explains periodicity. To allow for variance in periodicity, multiply

with an RBF Kernel.

21

CHAPTER 5. APPLY GP TO THE LINEAR REGRESSION MODEL 22

5.1 Default Kernel
The default kernels hyper-parameters are optimised during fitting and uses

1 ConstantKernel(1.0, constant_value_bounds="fixed" *
2 RBF(1.0, length_scale_bounds="fixed").

Listing 5.1: Default Kernel for the Gaussian Process.

Figure 5.1: The predictions against the training and test set for GP (Default Kernel).

The hyper-parameters of the kernel are optimized during fitting of GaussianProcessRegressor
by maximizing the log-marginal-likelihood (LML) based on the passed optimizer.

CHAPTER 5. APPLY GP TO THE LINEAR REGRESSION MODEL 23

5.2 Custom RBF Kernel
The first kernel I tried was to modify the parameters of the RBF kernel

1 kernel = 1.0 * RBF(length_scale=0.5, length_scale_bounds=(1e-3, 1e2))

Listing 5.2: Custom RBF Kernel for the Gaussian Process.

Figure 5.2: The predictions against the training and test set for GP (Custom RBF
Kernel).

CHAPTER 5. APPLY GP TO THE LINEAR REGRESSION MODEL 24

5.3 Custom RBF Kernel + White Noise
The sklearn (Pedregosa et al., 2011) documentation states that:

“The noise level in the targets can be specified by passing it via the parameter
alpha, either globally as a scalar or per datapoint. Note that a moderate noise
level can also be helpful for dealing with numeric issues during fitting as it
is effectively implemented as Tikhonov regularization, i.e., by adding it to
the diagonal of the kernel matrix. An alternative to specifying the noise level
explicitly is to include a WhiteKernel component into the kernel, which can
estimate the global noise level from the data.”

So i chose to use additive noise in the form of WhiteKernel, which allows the model to
learn the noise level of the data.

1 kernel = 1.0 * RBF(length_scale=0.5, length_scale_bounds=(1e-3, 1e2)) +
2 WhiteKernel(noise_level=1e-4, noise_level_bounds=(1e-22, 1e2))

Listing 5.3: Custom RBF-WN Kernel for the Gaussian Process.

Figure 5.3: The predictions against the training and test set for GP (Custom RBF + WN
Kernel).

CHAPTER 5. APPLY GP TO THE LINEAR REGRESSION MODEL 25

5.4 Gaussian Process Bayesian Neural Network
For this model I used tensorflow-probability (Abadi et al., 2015) to implement a
Bayesian Neural Network, where the linear weights are replaced with a probability
distribution. The performance is notable worse than the previous method, as initialising
the kernel proved to be more difficult than simple additive modes for noise in sklearn. I
chose not to investigate this further as the model complexity seemed unnecessary, but it
could be an avenue for future research.

Figure 5.4: The predictions against the training and test set for the BNN.

CHAPTER 5. APPLY GP TO THE LINEAR REGRESSION MODEL 26

5.5 Approaches Compared
The initial kernels showed clear signs of overfitting (Table 5.1), as the errors are orders of
magnitude apart from the test errors in Table 5.2. Adding noise to the kernel allowed the
model to properly generalise and avoid memorising the training set.

Table 5.1: The RMSE and MAE of the training set for GP.

Metric Default Kernel
RMSE 3.826778857177952e-09
MAE 2.2014088977654702e-09

Custom RBF Kernel
RMSE 1.3779388124263726e-09
MAE 1.1162595685750472e-09

Custom RBF + WN Kernel
RMSE 0.32481282810488643
MAE 0.25623847664346944

BNN
RMSE 13.239257476369245
MAE 3.061540532559499

Table 5.2: The RMSE and MAE of the test set for GP.

Metric Default Kernel
RMSE 1.8900458253349346
MAE 1.1677819263423648

Custom RBF Kernel
RMSE 10.924232516393255
MAE 8.312543062134372

Custom RBF + WN Kernel
RMSE 0.6718571298232691
MAE 0.5022469531523884

BNN
RMSE 13.432235335150008
MAE 3.0778536338179663

Chapter 6

Results

The results across all models shown in Table 6.1 for the mean average error, suggest that
the most accurate model is the Gaussian Process with an RBF + WN kernel. The others
have very similar performance, with Hamiltonian Monte Carlo having the second best
accuracy likely due to the sampling allowing the most optimal alpha and beta to be found.

The Bayesian Neural Network has a similar mean average error to the other models, but
a much higher root mean squared error in Table 6.2, suggesting this model is not well
optimised and has large outliers.

Table 6.1: The MAE for all fitted and evaluated models.

Model Train Error (MAE) Test Error (MAE) Absolute Difference
OLS 2.1306794414069143 2.069010093808354 0.06166934759856035
BLR 2.130668537391788 1.9907650699570147 0.13990346743477322
VI 2.1306681834494188 2.0689828677240825 0.06168531572533631
HMC 2.160597295563628 2.103821458477387 0.05677583708624079
GP 0.25623847664346944 0.5022469531523884 0.246008476508919
BNN 3.061540532559499 3.0778536338179663 0.01631310125846719

Table 6.2: The RMSE for all fitted and evaluated models.

Model Train Error (RMSE) Test Error (RMSE) Absolute Difference
OLS 3.0115517876503617 2.8435880167333694 0.16796377091699233
BLR 3.011551809679529 2.8063010631019174 0.20525074657761166
VI 3.0115518111318993 2.8435839397385267 0.16796787139337255
HMC 3.018637231485769 2.852187436445753 0.16644979504001567
GP 0.32481282810488643 0.6718571298232691 0.34704430171838263
BNN 13.239257476369245 13.432235335150008 0.1929778587807629

The model with the smallest absolute difference between the train and test set for RMSE
and MAE was OLS, which suggests it is fairly well generalised with fewer outliers than
the other models. The MAE is robust to outliers, thus gives us a better idea of the model
generalization without noise.

27

CHAPTER 6. RESULTS 28

Figure 6.1: The predictions against the training set for all models.

CHAPTER 6. RESULTS 29

Figure 6.2: The predictions against the test set for all models.

CHAPTER 6. RESULTS 30

Figure 6.3: The posterior for BLR, VI and HMC with best α and β values.

Chapter 7

Conclusion

Figure 4.4 demonstrates that there is a bias in the distribution on the x and y axes, where
the skew is higher along x. This deviation suggests that the dataset itself is non-gaussian,
as opposed to Figure 3.5, and linear models are potentially suitable for prediction.

Of all the methods used, shown in Figure 6.2, the Gaussian Process is the clear winner,
likely due to the ability to refine a custom kernel to allow insights into what the distribution
might be to be given almost like a prior. Accuracy across the board was quite uniform
(Table 6.1), which is to be expected given their model similarities. The advantage of
Variational Inference was the improved computation time to find the optimal α and β,
however this is mitigated by using the Woodbury method in Listing 2.2 for computing
the posterior for BLR. Hamiltonian Monte Carlo had an extra overhead of computation
required to sample from the posterior, but this resulted in a slight accuracy boost compared
to the previous methods.

The least performing model was the Gaussian Process Bayesian Neural Network, but with
limited time constraints it became beyond the scope of this analysis. Future work could
involve taking a review (Shridhar, Laumann and Liwicki, 2019) of this research area, in
particular the kernel used for the network to try and incorporate noise, as was the case
for improvement seen in the standard Gaussian Process.

We report a mean average error of 0.2562 for our best model, the Gaussian Process (Table
6.1), in contrast to 0.51 reported using Random Forests by Tsanas and Xifara (2012).
Advancements in machine learning algorithm implementation, and the mass adoption of
python have allowed the community to create tools and packages to allow much faster
prototyping of different models since the initial paper by Tsanas and Xifara (2012).

The difference in the training and test accuracy was taken to assess the level of overfitting
and underfitting. The best absolute difference for the mean average error (robust to
outliers) was found to be ordinary least squares and for the mean squared error (amplifies
the value associated with outliers), the Gaussian Process. This suggests that GP had less
outliers and thus a better spread of the data compared to the other models.

We have shown that a stochastic approach to this dataset gave us access to confidence
intervals, of which a comparison is illustrated in Figure 6.2. We can see that in general
the confidence interval in the Gaussian Process has a much smaller range, thus we can be
more confident in the predicted values for this model.

31

Bibliography

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S.,
Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G.,
Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D.,
Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B.,
Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals,
O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y. and Zheng, X., 2015. TensorFlow:
Large-scale machine learning on heterogeneous systems [Online]. Software available
from tensorflow.org. Available from: https://www.tensorflow.org/.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M. and Duchesnay, E., 2011. Scikit-learn: Machine learning in
Python. Journal of machine learning research [Online], 12, pp.2825–2830. Available
from: https://scikit-learn.org/.

Shridhar, K., Laumann, F. and Liwicki, M., 2019. A Comprehensive guide to Bayesian
Convolutional Neural Network with Variational Inference [Online]. [Online], pp.1–38.
1901.02731, Available from: http://arxiv.org/abs/1901.02731.

Tsanas, A. and Xifara, A., 2012. Accurate quantitative estimation of energy performance
of residential buildings using statistical machine learning tools. Energy and build-
ings [Online], 49, pp.560–567. Available from: https://doi.org/10.1016/j.enbuild.
2012.03.003.

32

https://www.tensorflow.org/
https://scikit-learn.org/
1901.02731
http://arxiv.org/abs/1901.02731
https://doi.org/10.1016/j.enbuild.2012.03.003
https://doi.org/10.1016/j.enbuild.2012.03.003

	Exploratory Analysis
	Correlation
	Ordinary Least Squares

	Bayesian Linear Regression
	Type-II Maximum Likelihood
	Variational Inference

	Verify HMC on a 2D Gaussian
	Apply HMC to the Linear Regression Model
	Apply GP to the Linear Regression Model
	Default Kernel
	Custom RBF Kernel
	Custom RBF Kernel + White Noise
	Gaussian Process Bayesian Neural Network
	Approaches Compared

	Results
	Conclusion
	Bibliography

