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Q1. [30 pts] True or False
(1) [2 pts] Random forests usually perform better than AdaBoost when your dataset has mislabeled data points.
 True © False

(2) [2 pts] The discriminant function computed by kernel methods are a linear function of its parameters, not
necessarily a linear function of the inputs.
 True © False

(3) [2 pts] The XOR operator can be modeled using a neural network with a single hidden layer (i.e. 3-layer
network).
 True © False

(4) [2 pts] Convolutional neural networks are rotation invariant.
© True  False

(5) [2 pts] Making a decision tree deeper will assure better fit but reduce robustness.
 True © False

(6) [2 pts] Bagging makes use of the bootstrap method.
 True © False

(7) [2 pts] K-means automatically adjusts the number of clusters.
© True  False

(8) [2 pts] Dimensionality reduction can be used as pre-processing for machine learning algorithms like decision
trees, kd-trees, neural networks etc.
 True © False

(9) [2 pts] K-d trees guarantee an exponential reduction in the time it takes to find the nearest neighbor of an
example as compared to the naive method of comparing the distances to every other example.
© True  False

(10) [2 pts] Logistic regression is equivalent to a neural network without hidden units and using cross-entropy loss.
 True © False

(11) [2 pts] Convolutional neural networks generally have fewer free parameters as compared to fully connected
neural networks.
 True © False

(12) [2 pts] K-medoids is a kind of agglomerative clustering.
© True  False

(13) [2 pts] Whitening the data doesn’t change the first principal direction.
© True  False

(14) [2 pts] PCA can be kernelized.
 True © False

(15) [2 pts] Performing K-nearest neighbors with K = N yields more complex decision boundaries than 1-nearest
neighbor.
© True  False
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Q2. [30 pts] Multiple Choice
(1) [3 pts] Which of the following guidelines is applicable to initialization of the weight vector in a fully connected

neural network.

© Should not set it to zero since otherwise it will
cause overfitting

 Should not set it to zero since otherwise
(stochastic) gradient descent will explore a very
small space

© Should set it to zero since otherwise it causes
a bias

© Should set it to zero in order to preserve sym-
metry across all neurons

(2) [3 pts] Duplicating a feature in linear regression

 Can reduce the L2-Penalized Residual Sum
of Squares.

 Does not reduce the Residual Sum of Squares
(RSS).

© Can reduce the L1-Penalized Residual Sum of
Squares (RSS).

© None of the above

(3) [3 pts] Which of the following is/are forms of regularization in neural networks.

 Weight decay

 L2 regularization

 L1 regularization

 Dropout

(4) [3 pts] We are given a classifier that computes probabilities for two classes (positive and negative). The following
is always true about the ROC curve, and the area under the ROC curve (AUC):

© An AUC of 0.5 represents a classifier that
performs worse than random.

 We generate an ROC curve by varying the
discriminative threshold of our classifier.

 The ROC curve allows us to visualize the
tradeoff between true positive and false positive
classifications.

 The ROC curve monotonically increases.

(5) [3 pts] The K-means algorithm:

© Requires the dimension of the feature space
to be no bigger than the number of samples

© Has the smallest value of the objective func-
tion when K = 1

 Minimizes the within class variance for a given

number of clusters

© Converges to the global optimum if and only
if the initial means are chosen as some of the sam-
ples themselves

© None of the above

(6) [3 pts] Suppose when you are training your convolutional neural network, you find that the training loss just
doesn’t go down after initialization. What could you try to fix this problem?

 Change the network architecture

 Change learning rates

 Ensure training data is being read correctly

 Find a better model

 Normalize the inputs to the network

© Add a regularization term
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(7) [3 pts] Logistic regression:

 Minimizes cross-entropy loss

© Has a simple, closed form analytical solution

 Models the log-odds as a linear function

 Is a classification method to estimate class
posterior probabilities

(8) [3 pts] Select all the true statements.

© The first principal component is unique up to
a sign change.

© The last principal component is unique up to
a sign change.

© All principal components are unique up to a
sign change.

 If some features are linearly dependent, at
least one singular value is zero.

© If some features are correlated, at least one
singular value is zero.

(9) [3 pts] Select all the choices that make the following statement true:
In (a), the training error does not increase as (b) increases.

 a: K-means,
b: number of iterations

© a: Training neural nets with back propagation
using batch gradient decent,
b: number of iterations

© a: Training neural nets with back propagation
using stochastic gradient decent,
b: number of iterations

 a: Regression Trees with square loss,
b: depth of the tree

© a: Random Forest Classifier,
b: number of trees in the forest

 a: Least squares,
b: number of features

(10) [3 pts] Neural networks:

© Optimize a convex objective function

© Can only be trained with stochastic gradient
descent

 Can use a mix of different activation functions

 Can be made to perform well even when the
number of parameters/weights is much greater
than the number of data points.
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Q3. [15 pts] Nearest Neighbors and Bayes risk
In this problem, we want to investigate whether given enough training examples, the Bayes decision rule gives more
accurate results that nearest neighbors.

A life insurance company needs to estimate whether a client is at risk of dying in the year to come, based on his
age and blood pressure. We call x = [A,B] (A=Age, B=Blood pressure) the two dimensional input vector and y
the outcome (y = 1 if the client dies and y = −1 otherwise). The insurance company has a lot of data, enough to
estimate accurately with Parzen windows the posterior probability P (y = 1|x). This is represented in a diagram in
Figure 1.

Figure 1: Draw your answer to the Nearest Neighbor and Bayes risk problem. Note that the distribution P (x) is
assumed to be uniform across the area shown in the figure.

Note: No worries, nobody died, this is a fictitious example. For simplicity we have 4 regions in which P (y = 1|x) is
constant, and the distribution P (x) is assumed to be uniform across the area shown in the figure.

Let us name the different regions:

R1 :P (y = 1|x) = 0

R2 :P (y = 1|x) = 0.1

R3 :P (y = 1|x) = 0.9

R4 :P (y = 1|x) = 1

(1) [2 pts] Draw on the figure the Bayes optimum decision boundary with a thick line.

(2) [2 pts] What is the Bayes risk in each of the four regions (the Bayes risk is the probability of error of the
optimum Bayes classifier). R1: EBayes = 0
R2: EBayes = 0.1
R3: EBayes = 0.1
R4: EBayes = 0

(3) [4 pts] Assume we have lots and lots of samples due to which we can assume that the nearest neighbor of any
sample lies in the same region as that sample. Now consider any sample, say, x which falls in region Ri. For
i ∈ {1, 2, 3, 4}, find the probability that x and its nearest neighbor belong to different classes (that is, have
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different labels):

1. If they both fall in R1: 0
2. If they both fall in R2: x 0.9 (+1) x 0.1 (+1) + x 0.1 (+1) x 0.9 (+1) ⇒ 2 * 0.1 * 0.9 = 0.18
3. If they both fall in R3: same as R2: 2 * 0.1 * 0.9
4. If they both fall in R4: 0

(4) [2 pts] What is the nearest neighbor error rate ENN in each region:

R1: ENN = 0
R2: ENN = 0.18
R3: ENN = 0.18
R4: ENN = 0

(5) [5 pts] Now let us generalize the previous results to the case where the posterior probabilities are:

R1 :P (y = 1|x) = 0

R2 :P (y = 1|x) = p

R3 :P (y = 1|x) = (1− p)
R4 :P (y = 1|x) = 1

where p is a number between 0 and 0.5.
After recalculating the results of the previous questions, give an upper bound and a lower bound of ENN in
terms of EBayes.

R1 :EBayes = 0ENN = 0

R2 :EBayes = pENN = 2p(1− p)
R3 :EBayes = pENN = 2p(1− p)
R4 :EBayes = 0ENN = 0

EBayes <= ENN <= 2 EBayes(1-EBayes)
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Q4. [11 pts] Curse of dimensionality
When the dimension of input space d is large, the performance of the nearest neighbor algorithm (and other local
methods such as “Parzen windows”) tends to deteriorate. This phenomenon is known as the “curse of dimensionality”.
In the following questions, we will assume that we have a training set of fixed size N and that all features are uniformly
distributed on [0, 1]. Associated with each test example x is a predicted response y corresponding to the average of
the responses associated to the training examples that are near x.

(1) [1 pt] Suppose we have only one feature (d = 1) and we want to make prediction using only training examples
that are within 10% of the input range. For instance, to predict the response y of x = 0.6, we will use the
training examples that fall in the range [0.55, 0.65] only. On average, what fraction of the training examples
will we use to make each prediction?

10%

(2) [1 pt] Now suppose that we have two features (d = 2) and we want to predict using only training examples that
are within 10% of the input range in both dimensions. For instance, to predict the response y of x = (0.6, 0.35),
we will use the training examples that fall in the range [0.55, 0.65] for the first feature and [0.3, 0.4] for the
second one. On average, what fraction of the training examples will we use to make each prediction?

1%

(3) [4 pts] Generalize your response for the general case of any dimension d. Argue that a drawback of methods
based on nearest neighbors is that, when d is large, there are very few training examples near any test example.

limd⇒∞(0.1)d = 0

(4) [5 pts] Now suppose that we wish to make a prediction of a test example x by creating a d-dimensional
hypercube centered around x that contains on average 10% of the training examples. For d=1, 2, 3, and 100,
what is the length of each side of the hypercube? Explain the implication of your answer on the performance
of the nearest neighbors algorithm.

d = 1: 0.1, d = 2: 0.3, d = 5 = 0.5, d = 100: 0.98. In high dimensions, you end up having to look at all the points.
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Q5. [22 pts] Decision Trees and Random Forests
Consider constructing a decision tree on data with d features and n training points where each feature is real-valued
and each label takes one of m possible values. The splits are two-way, and are chosen to maximize the information
gain. We only consider splits that form a linear boundary parallel to one of the axes. In parts (a), (b) and (c) we
will consider a standalone decision tree and not a random forest, so no randomization.

(1) [4 pts] Prove or give a counter-example: For every value of m > 3, there exists some probability distribution
on m objects such that its entropy is less than −1. False. The entropy is always non-negative since −p log p
is non-negative when p ∈ [0, 1].

(2) [4 pts] Prove or give a counter-example: In any path from the root split to a leaf, the same feature will never
be split on twice.

False. Example: one dimensional feature space with training poins of two classes x and o arranged as
xxxooooxxx.

(3) [4 pts] Prove or give a counter-example: The information gain at the root is at least as much as the information
gain at any other node.

False. Example: the XOR function.

(4) [4 pts] One may be concerned that the randomness introduced in random forests may cause trouble, for instance,
some features or samples may not be considered at all. We will investigate this phenomenon in the next two
parts.

Consider n training points in a feature space of d dimensions. Consider building a random forest with t binary
trees, each having exactly h internal nodes. Let f be the number of features randomly selected at each node.
In order to simplify our calculations, we will let f = 1. For this setting, compute the probability that a certain
feature (say, the first feature) is never considered for splitting.

The probability that it is not considered for splitting in a particluar node of a particular tree is 1 − 1
d . The

subsampling of f = 1 features at each node is independent of all others. There are a total of th nodes and
hence the final answer is (1− 1

d )th.

(5) [3 pts] Now let us investigate the concern regarding the random selection of the samples. Suppose each tree
employs n bootstrapped training samples. Compute the probability that a particular sample (say, the first
sample) is never considered in any of the trees.

The probability that it is not considered in one of the trees is (1 − 1
n )n. Since the choice for every tree is

independent, the probability that it is not considered in any of the trees is (1− 1
n )nt.

(6) [3 pts] Compute the values of the probabilities you obtained in the previous two parts for the case when there
are n = 2 training points, d = 2 dimensions, t = 10 trees of depth h = 4 (you may leave your answer in

a fraction and exponentiated form, e.g., as
(

51
100

)2
. What conclusions can you draw from your answer with

regard to the concern mentioned in the beginning of the problem?
1

2150 and 1
220 . It is quite unlikely that a feature or a sample will be missed.
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Q6. [12 pts] Elastic net regularization
A powerful method for regularizing linear regression is called elastic net regularization, which combines ridge regres-
sion (L2 regularization) and Lasso (L1 regularization).

Observe that linear regression can be probabilistically modeled as P (y(k)|x(k),w, σ2) ∼ N (wTx(k), σ2). This means
P (y(k)|x(k),w, σ2) =

1√
2πσ

exp(− (y(k) −wTx(k))2

2σ2
)

It is then possible to show that ridge regression is equivalent to MAP estimation with a Gaussian prior, and Lasso
is equivalent to MAP estimation with a Laplace prior.

Let us assume a different prior distribution. Assume each weight wj is i.i.d, drawn from a distribution such that
P (wj) = q exp(−α1|wj | − α2w

2
j ), where q, α1, α2 are fixed constants. Our training set is (x(k), y(k)), ...(x(n), y(n)).

(1) [6 pts] Show that the MAP estimate for w is equivalent to minimizing the following risk function, for some
choice of constants λ1, λ2:

R(w) =

n∑
k=1

(y(k) −wTx(k))2 + λ1‖w‖1 + λ2‖w‖22

The posterior of w is:

P (w|x(k), y(k)) ∝ (

n∏
k=1

N (y(k)|wTx(k), σ2)) · P (w) = (

n∏
k=1

N (y(k)|wTx(k), σ2)) ·
D∏

j=1

P (wj)

Taking the log-probability, we want to maximize:

l(w) =

n∑
k=1

logN (y(k)|wTx(k), σ2) +

D∑
j=1

logP (wj)

=

n∑
k=1

log(
1√
2πσ

exp(− (y(k) −wTx(k))2

2σ2
)) +

D∑
j=1

log q exp(−α1|wj | − α2w
2
j )

=

n∑
k=1

− (y(k) −wTx(k))2

2σ2
− α1

D∑
j=1

|wj | − α2

D∑
j=1

w2
j + n log(

1√
2πσ

) +D log(q)

= −
n∑

k=1

(y(k) −wTx(k))2 − 2σ2α1||w||1 − 2σ2α2||w||22 + n log(
1√
2πσ

) +D log(q)

This is equivalent to minimizing the following function:

R(w) =

n∑
k=1

(y(k) −wTx(k))2 + λ1‖w‖1 + λ2‖w‖22

where λ1 = 2σ2α1, λ2 = 2σ2α2.
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(2) [2 pts] Suppose we scale both λ1 and λ2 by a positive constant c. The graph below represents the value of a
single one of the weights, wi graphed against the value of c. Out of the following set of values for λ1, λ2, which
best corresponds to the graph (select exactly one option)?

© λ1 = 1, λ2 = 0  λ1 = 0, λ2 = 1

(3) [2 pts] Explain why your choice in (b) results in the graph.

That choice is equivalent to just doing Lasso, which induces sparsity.

(4) [2 pts] What is the advantage of using Elastic net regularization over using a single regularization term of
||w||p, where 1 < p < 2?

Elastic net gives us the option of inducing sparsity.
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Q7. [14 pts] Neural Networks
(1) [6 pts] Here is the historical LeNet Convolutional Neural Network architecture of Yann LeCun et al. for digit

classification that we’ve discussed in class. Here, the INPUT layer takes in a 32x32 image, and the OUTPUT
layer produces 10 outputs. The notation 6@28x28 means 6 matrices of size 28x28.

If the parameters of a given layer are the weights that connect to its inputs,

• Given that the input size is 32x32, and the Layer 1 size is 28x28, what’s the size of the convolutional filter
in the first layer (i.e. how many inputs is each neuron connected to)? 5× 5

• How many independent parameters (weight and bias) are in layer C1? 5× 5× 6× 1 + 6 = 156

• How many independent parameters (weight and bias) are in layer C3? 5× 5× 16× 6 + 16 = 2416

• How many independent parameters (weight and bias) are in layer F6? 120× 84 + 84 = 10164
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(2) [8 pts] Consider a three layer fully-connected network with n1, n2, n3 neurons in three layers respectively. Inputs
are fed into the first layer. The loss is mean squared error E, and the non-linearity is a sigmoid function. Let
the label vector be t of size n3. Let each layer output vector be yi and input vector be zi, both of size ni. Let
the weight between layer i and layer i+ 1 be Wii+1. The j-th element in yi is defined by yji , same for zji . The
weight connecting k-th and l-th neuron in i, i + 1 layers is defined by W kl

ii+1 (You don’t need to consider bias
in this problem).

Input #1

Input #2

Input #3

Input #4

Output #1

Output #2

Hidden
layer
(L2)

Input
layer
(L1)

Output
layer
(L3)

Here is a summary of our notation:

� σ denotes the activation function for L2 and L3, σ(x) = 1
1+e−x . There is no activation applied to the input

layer.

� z
(j)
i =

∑P
k=1W

kj
i−1ix

(k)
i−1

� y
(j)
i = σ

(∑P
k=1W

kj
i−1ix

(k)
i−1

)
Now solve the following problems.

• Find ∂E

∂zj
3

in terms of yj3.

−2yj3(1− yj3)(tj − yj3)

• Find ∂E
∂yk

2
in terms of elements in W23 and ∂E

∂zj
3

.∑n3

j=1W
kj
23

∂E

∂zj
3

• Find ∂E

∂Wkj
23

in terms of yk2 , yj3 and tj .

yk2
∂E

∂zj
3

= −2yj3(1− yj3)(tj − yj3)yk2

• If the input to a neuron in max-pooling layer is x and the output is y = max(x), derive ∂y
∂xi

.
∂y
∂xi

= 1 if and only if xi = max(x), otherwise ∂y
∂xi

= 0.
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Q8. [16 pts] The dimensions are high! And possibly hard too.
In this problem, we will derive a famous result called the “Johnson-Lindenstrauss” lemma. Suppose you are given n
arbitrary vectors x1, . . . , xn ∈ Rd×1. Let k = 320 log n. Now consider a matrix A ∈ Rk×d that is obtained randomly
in the following manner: every entry of the matrix is chosen independently at random from N (0, 1). Define vectors
z1, . . . , zn ∈ Rk×1 as zi = 1√

k
Axi for every i ∈ {1, . . . , n}.

(1) [4 pts] For any given i ∈ {1, . . . , n}, what is the distribution of the random vector Axi? Your answer should be
in terms of the vector xi. To simplify notation, let v = xi. Clearly, Av is a zero-mean jointly Gaussian vector.
Let us compute the covariance: E[(Av)(Av)T ]. Letting aTj denote the jth row of A, we have that the jth entry

of vector Av is aTj v, and hence the (i, j)th entry of (Av)(Av)T is (aTi vv
Taj). It follows that the (i, j)th entry of

E[(Av)(Av)T ] is E[aTi vv
Taj ] = E[vTaia

T
j v] = vTE[aia

T
j ]v. Now we have E[aia

T
j ] = I if i = j and 0 otherwise.

Thus the covariance matrix is a diagonal matrix with each entry on the diagonal equal to ‖xi‖22.

(2) [4 pts] For any distinct i, j ∈ {1, . . . , n}, derive a relation between E[||A(xi − xj)||22] and the value of ||xi −
xj ||22? More points for deriving the relation using your answer from part (1) above. Without using part 1:
E[||A(xi − xj)||22] = E[(xi − xj)TATA(xi − xj)] = (xi − xj)TE[ATA](xi − xj). E[ATA] = kI and hence the
answer is k||(xi − xj)||22.

Using part 1: Now let v = xi − xj . Observe that E[||Av||22] is simply the sum of the variances of each entry of
the vector Av. We computed these variances in part (1) as being equal to ‖v‖22. Since vector Av has length k,
the sum of the variances equals k‖v‖22.

(3) [4 pts] It can be shown that for any fixed vector v, the random matrix A has the property that

3

4
||v||22 ≤ ||Av||22 ≤

5

4
||v||22

with probability at least 1− 1
n4 . Using this fact, show that with probability at least 1− 1

n2 , every pair (zi, zj)
simultaneously satisfies 3

4 ||x
i−xj ||22 ≤ ||zi− zj ||22 ≤ 5

4 ||x
i−xj ||22. (Think of how you would bound probabilities

of multiple events. Only requires a very basic fact about probability and a little thought.) Use the simple fact
that: P (A or B) ≤ P (A) + P (B).

(4) [4 pts] Describe, in at most two sentences, the usefulness of this result. (Think of n and d as having very large
values, for instance, several billions). Helps in reducing the dimensionality of the feature space in problems
where only the pairwise distances need to be preserved.
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Q1. [23 pts] True/False
(a) [1 pt] Solving a non linear separation problem with a hard margin Kernelized SVM (Gaussian RBF Kernel)

might lead to overfitting.

 True © False

(b) [1 pt] In SVMs, the sum of the Lagrange multipliers corresponding to the positive examples is equal to the sum
of the Lagrange multipliers corresponding to the negative examples.

 True © False

(c) [1 pt] SVMs directly give us the posterior probabilities P (y = 1|x) and P (y = −1|x).

© True  False

(d) [1 pt] V (X) = E[X]2 − E[X2]

© True  False

(e) [1 pt] In the discriminative approach to solving classification problems, we model the conditional probability
of the labels given the observations.

 True © False

(f) [1 pt] In a two class classification problem, a point on the Bayes optimal decision boundary x∗ always satisfies
P (y = 1|x∗) = P (y = 0|x∗).
© True  False

(g) [1 pt] Any linear combination of the components of a multivariate Gaussian is a univariate Gaussian.

 True © False

(h) [1 pt] For any two random variables X ∼ N (µ1, σ
2
1) and Y ∼ N (µ2, σ

2
2), X + Y ∼ N (µ1 + µ2, σ

2
1 + σ2

2).

© True  False

(i) [1 pt] Stanford and Berkeley students are trying to solve the same logistic regression problem for a dataset.
The Stanford group claims that their initialization point will lead to a much better optimum than Berkeley’s
initialization point. Stanford is correct.

© True  False

(j) [1 pt] In logistic regression, we model the odds ratio ( p
1−p ) as a linear function.

© True  False

(k) [1 pt] Random forests can be used to classify infinite dimensional data.

 True © False

(l) [1 pt] In boosting we start with a Gaussian weight distribution over the training samples.

© True  False

(m) [1 pt] In Adaboost, the error of each hypothesis is calculated by the ratio of misclassified examples to the total
number of examples.

© True  False

(n) [1 pt] When k = 1 and N →∞, the kNN classification rate is bounded above by twice the Bayes error rate.

 True © False

(o) [1 pt] A single layer neural network with a sigmoid activation for binary classification with the cross entropy
loss is exactly equivalent to logistic regression.

 True © False
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(p) [1 pt] The loss function for LeNet5 (the convolutional neural network by LeCun et al.) is convex.

© True  False

(q) [1 pt] Convolution is a linear operation i.e. (αf1 + βf2) ∗ g = αf1 ∗ g + βf2 ∗ g.

 True © False

(r) [1 pt] The k-means algorithm does coordinate descent on a non-convex objective function.

 True © False

(s) [1 pt] A 1-NN classifier has higher variance than a 3-NN classifier.

 True © False

(t) [1 pt] The single link agglomerative clustering algorithm groups two clusters on the basis of the maximum
distance between points in the two clusters.

© True  False

(u) [1 pt] The largest eigenvector of the covariance matrix is the direction of minimum variance in the data.

© True  False

(v) [1 pt] The eigenvectors of AAT and ATA are the same.

© True  False

(w) [1 pt] The non-zero eigenvalues of AAT and ATA are the same.

 True © False
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Q2. [36 pts] Multiple Choice Questions
(a) [4 pts] In linear regression, we model P (y|x) ∼ N (wTx + w0, σ

2). The irreducible error in this model is
.

 σ2

 E[(y − E[y|x])2|x]

© E[(y − E[y|x])|x]

© E[y|x]

(b) [4 pts] Let S1 and S2 be the set of support vectors and w1 and w2 be the learnt weight vectors for a linearly
separable problem using hard and soft margin linear SVMs respectively. Which of the following are correct?

© S1 ⊂ S2

© w1 = w2

 S1 may not be a subset of S2

 w1 may not be equal to w2.

(c) [4 pts] Ordinary least-squares regression is equivalent to assuming that each data point is generated according
to a linear function of the input plus zero-mean, constant-variance Gaussian noise. In many systems, however,
the noise variance is itself a positive linear function of the input (which is assumed to be non-negative, i.e.,
x ≥ 0). Which of the following families of probability models correctly describes this situation in the univariate
case?

 P (y|x) = 1
σ
√
2πx

exp(− (y−(w0+w1x))
2

2xσ2 )

© P (y|x) = 1
σ
√
2π

exp(− (y−(w0+w1x))
2

2σ2 )

© P (y|x) = 1
σ
√
2πx

exp(− (y−(w0+(w1+σ
2)x))2

2σ2 )

© P (y|x) = 1
σx
√
2π

exp(− (y−(w0+w1x))
2

2x2σ2 )

(d) [3 pts] The left singular vectors of a matrix A can be found in .

 Eigenvectors of AAT

© Eigenvectors of ATA

© Eigenvectors of A2

© Eigenvalues of AAT

(e) [3 pts] Averaging the output of multiple decision trees helps .

© Increase bias

© Decrease bias

© Increase variance

 Decrease variance

(f) [4 pts] Let A be a symmetric matrix and S be the matrix containing its eigenvectors as column vectors, and D
a diagonal matrix containing the corresponding eigenvalues on the diagonal. Which of the following are true:

 AS = SD

© AS = DS

© SA = DS

© AS = DST

(g) [4 pts] Consider the following dataset: A = (0, 2), B = (0, 1) and C = (1, 0). The k-means algorithm is
initialized with centers at A and B. Upon convergence, the two centers will be at

© A and C

 A and the midpoint of BC

© C and the midpoint of AB

© A and B
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(h) [3 pts] Which of the following loss functions are convex?

© Misclassification loss

 Logistic loss

 Hinge loss

 Exponential Loss (e(−yf(x)))

(i) [3 pts] Consider T1, a decision stump (tree of depth 2) and T2, a decision tree that is grown till a maximum
depth of 4. Which of the following is/are correct?

© Bias(T1) < Bias(T2)

 Bias(T1) > Bias(T2)

 V ariance(T1) < V ariance(T2)

© V ariance(T1) > V ariance(T2)

(j) [4 pts] Consider the problem of building decision trees with k-ary splits (split one node intok nodes) and
you are deciding k for each node by calculating the entropy impurity for different values of k and optimizing
simultaneously over the splitting threshold(s) and k. Which of the following is/are true?

© The algorithm will always choose k = 2

 The algorithm will prefer high values of k

 There will be k−1 thresholds for a k-ary split

© This model is strictly more powerful than a
binary decision tree.
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Q3. [26 pts] Short Answers

(a) [5 pts] Given that (x1, x2) are jointly normally distributed with µ =
[ µ1
µ2

]
and Σ =

[ σ2
1 σ12

σ21 σ2
2

]
(σ21 = σ12), give

an expression for the mean of the conditional distribution p(x1|x2 = a).

This can be solved by writing p(x1|x2 = a) = p(x1,x2=a)
p(x2=a)

. x2 being a component of a multivariate Gaussian is

a univariate Gaussian with x2 ∼ N (µ2, σ
2
2). Write out the Gaussian densities and simplify (complete squares)

to see the following:

x1|x2 = a ∼ N (µ̄, σ̄2), µ̄ = µ1 +
σ12
σ2
22

(a− µ2)

(b) [4 pts] The logistic function is given by σ(x) = 1
1+e−x . Show that σ′(x) = σ(x)(1− σ(x)).

σ′(x) =
e−x

(1 + e−x)2
=

1

(1 + e−x)
.

e−x

(1 + e−x)
=

(
1

1 + e−x

)(
1− 1

1 + e−x

)
= σ(x)(1− σ(x))

(c) Let X have a uniform distribution

p(x; θ) =

{
1
θ 0 ≤ x ≤ θ
0 otherwise

Suppose that n samples x1, . . . , xn are drawn independently according to p(x; θ).

(i) [5 pts] The maximum likelihood estimate of θ is x(n) = max(x1, x2, . . . , xn). Show that this estimate of θ
is biased.

Biased estimator: θ̂ (the sample estimate) is a biased estimator of θ (the population distribution parameter)

if E[θ̂] 6= θ.

Here θ̂ = x(n). And E[x(n)] = n
n+1θ 6= θ. The steps for finding E[x(n)] are given in the solutions of Homework

2, problem 5(c).

(ii) [2 pts] Give an expression for an unbiased estimator of θ.

θ̂unbiased =
n+ 1

n
x(n)

E[θ̂unbiased] = E[
n+ 1

n
x(n)] =

n+ 1

n
E[x(n)] =

n+ 1

n
× n

n+ 1
θ = θ
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(d) [5 pts] Consider the problem of fitting the following function to a dataset of 100 points {(xi, yi)}, i = 1 . . . 100:

y = αcos(x) + βsin(x) + γ

This problem can be solved using the least squares method with a solution of the form:αβ
γ

 = (XTX)−1XTY

What are X and Y ?

X =


cos(x1) sin(x1) 1
cos(x2) sin(x2) 1

...
...

...
cos(x100) sin(x100) 1

 Y =


y1
y2
...

y100



(e) [5 pts] Consider the problem of binary classification using the Naive Bayes classifier. You are given two dimen-
sional features (X1, X2) and the categorical class conditional distributions in the tables below. The entries in
the tables correspond to P (X1 = x1|Ci) and P (X2 = x2|Ci) respectively. The two classes are equally likely.

PPPPPPPPX1 =
Class

C1 C2

−1 0.2 0.3
0 0.4 0.6
1 0.4 0.1

PPPPPPPPX2 =
Class

C1 C2

−1 0.4 0.1
0 0.5 0.3
1 0.1 0.6

Given a data point (−1, 1), calculate the following posterior probabilities:

P (C1|X1 = −1, X2 = 1) = Using Bayes’ Rule and conditional independence assumption of Naive Bayes

P (X1=−1,X2=1|C1)P (C1)
P (X1=−1,X2=1)

= P (X1=−1|C1)P (X2=1|C1)P (C1)
P (X1=−1|C1)P (X2=1|C1)P (C1)+P (X1=−1|C2)P (X2=1|C2)P (C2)

= 0.1

P (C2|X1 = −1, X2 = 1) = 1− P (C1|X2 = −1, X1 = 1) = 0.9
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CS 189
Spring 2014

Introduction to
Machine Learning Final

• You have 3 hours for the exam.

• The exam is closed book, closed notes except your one-page crib sheet.

• Please use non-programmable calculators only.

• Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a
brief explanation.

• For true/false questions, fill in the True/False bubble.

• For multiple-choice questions, fill in the bubbles for ALL CORRECT CHOICES (in some cases, there may be
more than one). We have introduced a negative penalty for false positives for the multiple choice questions
such that the expected value of randomly guessing is 0. Don’t worry, for this section, your score will be the
maximum of your score and 0, thus you cannot incur a negative score for this section.
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Q8. Autoencoder /14

Total /100
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Q1. [9 pts] True or False
(a) [1 pt] The singular value decomposition of a real matrix is unique.

© True  False

(b) [1 pt] A multiple-layer neural network with linear activation functions is equivalent to one single-layer perceptron
that uses the same error function on the output layer and has the same number of inputs.

 True © False

(c) [1 pt] The maximum likelihood estimator for the parameter θ of a uniform distribution over [0, θ] is unbiased.

© True  False

(d) [1 pt] The k-means algorithm for clustering is guaranteed to converge to a local optimum.

 True © False

(e) [1 pt] Increasing the depth of a decision tree cannot increase its training error.

 True © False

(f) [1 pt] There exists a one-to-one feature mapping φ for every valid kernel k.

© True  False

(g) [1 pt] For high-dimensional data, k-d trees can be slower than brute force nearest neighbor search.

 True © False

(h) [1 pt] If we had infinite data and infinitely fast computers, kNN would be the only algorithm we would study
in CS 189.

 True © False

(i) [1 pt] For datasets with high label noise (many data points with incorrect labels), random forests would generally
perform better than boosted decision trees.

 True © False
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Q2. [24 pts] Multiple Choice
(a) [2 pts] In Homework 4, you fit a logistic regression model on spam and ham data for a Kaggle Competition.

Assume you had a very good score on the public test set, but when the GSIs ran your model on a private test
set, your score dropped a lot. This is likely because you overfitted by submitting multiple times and changing
the following between submissions:

 λ, your penalty term

 η, your step size

 ε, your convergence criterion

 Fixing a random bug

(b) [2 pts] Given d-dimensional data {xi}Ni=1, you run principle component analysis and pick P principle compo-
nents. Can you always reconstruct any data point xi for i ∈ {1 . . . N} from the P principle components with
zero reconstruction error?

© Yes, if P < d

© Yes, if P < n

 Yes, if P = d

© No, always

(c) [2 pts] Putting a standard Gaussian prior on the weights for linear regression (w ∼ N (0, I)) will result in what
type of posterior distribution on the weights?

© Laplace

© Poisson

© Uniform

 None of the above

(d) [2 pts] Suppose we have N instances of d-dimensional data. Let h be the amount of data storage necessary for
a histogram with a fixed number of ticks per axis, and let k be the amount of data storage necessary for kernel
density estimation. Which of the following is true about h and k?

© h and k grow linearly with N

© h and k grow exponentially with d

 h grows exponentially with d, and k grows
linearly N

© h grows linearly with N , and k grows expo-
nentially with d

(e) [2 pts] Which of the these classifiers could have generated this decision boundary?

© Linear SVM

© Logistic regression

 1-NN

© None of the above
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(f) [2 pts] Which of the these classifiers could have generated this decision boundary?

 Linear SVM

 Logistic regression

© 1-NN

© None of the above

(g) [2 pts] Which of the these classifiers could have generated this decision boundary?

© Linear SVM

© Logistic regression

© 1-NN

 None of the above

(h) [2 pts] You want to cluster this data into 2 clusters. Which of the these algorithms would work well?

© K-means  GMM clustering © Mean shift clustering
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(i) [2 pts] You want to cluster this data into 2 clusters. Which of the these algorithms would work well?

© K-means © GMM clustering  Mean shift clustering

(j) [2 pts] You want to cluster this data into 2 clusters. Which of the these algorithms would work well?

 K-means  GMM clustering  Mean shift clustering

The following questions are about how to help CS 189 TA Jonathan Snow to solve the homework.

(k) [2 pts] Jonathan just trained a decision tree for a digit recognition. He notices an extremely low training error,
but an abnormally large test error. He also notices that an SVM with a linear kernel performs much better
than his tree. What could be the cause of his problem?

 Decision tree is too deep

© Learning rate too high

 Decision tree is overfitting

© There is too much training data

(l) [2 pts] Jonathan has now switched to multilayer neural networks and notices that the training error is going
down and converges to a local minimum. Then when he tests on the new data, the test error is abnormally
high. What is probably going wrong and what do you recommend him to do?

 The training data size is not large enough.
Collect a larger training data and retrain it.

 Use a different initialization and train the net-
work several times. Use the average of predictions
from all nets to predict test data.

 Play with learning rate and add regularization
term to the objective function.

© Use the same training data but add two more
hidden layers.
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Q3. [11 pts] Softmax regression
Recall the setup of logistic regression: We assume that the posterior probability is of the form

p(Y = 1|x) =
1

1 + e−β
>x

This assumes that Y |X is a Bernoulli random variable. We now turn to the case where Y |X is a multinomial random
variable over K outcomes. This is called softmax regression, because the posterior probability is of the form

p(Y = k|x) = µk(x) =
eβ

>
k x∑K

j=1 e
β>

j x

which is called the softmax function. Assume we have observed data D = {xi, yi}Ni=1. Our goal is to learn the weight
vectors β1, . . . ,βK .

(a) [3 pts] Find the negative log likelihood of the data l(β1, . . . ,βK).

− logP(Y |X) = − log

N∏
i=1

P(yi|xi) = − log

N∏
i=1

K∏
k=1

(
eβ

T
k xi∑K

j=1 e
βT
j xi

)1{yi=k}

= −
N∑
i=1

K∑
k=1

1{yi = k}

βTk xi − log

 K∑
j=1

eβ
T
j xi


= −

N∑
i=1

K∑
k=1

1{yi = k}βTk xi +

N∑
i=1

log

 K∑
j=1

eβ
T
j xi



(b) [2 pts] We want to minimize the negative log likelihood. To combat overfitting, we put a regularizer on the
objective function. Find the gradient w.r.t. βk of the regularized objective

l(β1, . . . ,βK) + λ

K∑
k=1

‖βk‖2

∇βk
− logP(Y |X) = 2λβk −

N∑
i=1

1{yi = k}xi +

N∑
i=1

eβ
T
k xi∑K

j=1 e
βT
j xi

xi

Note that we can use the definition of µk(xi) here to save a bunch of writing.

= 2λβk +

N∑
i=1

(µk(xi)− 1{yi = k})xi

(c) [4 pts] State the gradient updates for both batch gradient descent and stochastic gradient descent.

Batch gradient descent:

β
(t+1)
k = β

(t)
k − η

(
2λβ

(t)
k +

N∑
i=1

(µk(xi)− 1{yi = k})xi

)

Stochastic gradient descent:

β
(t+1)
k = β

(t)
k − η

(
2λβ

(t)
k + (µk(xi)− 1{yi = k})xi

)
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(d) [2 pts] There are times when we’d like to consider the multiclass case to be a 1-vs.-all scenario with K binary
classifiers, and there are times when we’d like to attack the multiclass case with a multiclass classifier such as
softmax regression.

When would you want to use a softmax regression as opposed to K 1-vs.-all logistic regressions?

 When the classes are mutually exclusive

© When the classes are not mutually exclusive

© When the classes are not linearly separable

© Both work equally well
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Q4. [10 pts] PCA and least squares
Recall that PCA transforms (zero-mean) data into low-dimensional reconstructions that lie in the span of the top
k eigenvectors of the sample covariance matrix. Let Uk denote the d × k matrix of the top k eigenvectors of the
covariance matrix (Uk is a truncated version of U, which is the matrix of eigenvectors of the covariance matrix).

There are two approaches to computing the low-dimensional reconstruction w ∈ Rk of a data point x ∈ Rd:

1. Solve a least squares problem to minimize the reconstruction error
2. Project x onto the span of the columns of Uk

In this problem, you will show that these approaches are equivalent.

(a) [5 pts] Formulate the least squares problem in terms of Uk,x, and the variable w.

(Hint: This optimization problem should resemble linear regression.)

We want to find the weights such that when we weight the columns of Uk, we will minimize the residual error.
Thus, the objective function is ‖Ukw − xi‖2. Here is our least squares problem:

min
w
‖Ukw − xi‖2

(b) [5 pts] Show that the solution of the least squares problem is equal to U>k x, which is the projection of x onto
the span of the columns of Uk.

Recall the normal equations (which is the most important equation in the class!). For some unconstrained least
squares problem in the form

min
x
‖Ax− y‖2

the solution of the minimizer is
x∗ = (ATA)−1AT y

only when A is full rank. This applies here since Uk is full rank by definition. Plugging in our least squares
problem, we have

w∗ = (UTk Uk)−1UTk xi

If you don’t remember this you can easily derive this by taking the gradient of the objective function and
setting it to 0. We note that UTk Uk = Ik, (Ik = the identity matrix in k dimensions) thus

w∗ = (UTk Uk)−1UTk xi = (Ik)−1UTk xi = UTk xi

since the inverse of I is simply I.
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Q5. [10 pts] Mixture of linear regressions
In class, you learned thatK-means partitions points intoK clusters by minimizing an objective that encourages points
to be close to their cluster centers. K-means minimizes this objective in a coordinate descent fashion, alternating
between computing cluster assignments and cluster centers until convergence.

In this problem, you will devise an algorithm, in the spirit of K-means, that fits an entirely different kind of mixture
model. You are given a dataset {xi, yi}Ni=1, where xi ∈ Rd and yi ∈ R. You know that this dataset is a mixture of
realizations of K different linear regression models

y = w>k x +N (0, σ2)

parameterized by K weight vectors w1, . . . ,wK ∈ Rd.

Your algorithm will jointly determine the following:

• A partition S1, . . . , SK of the dataset such that (xi, yi) ∈ Sk iff (xi, yi) comes from model k
• The model weights w1, . . . ,wK

(a) [4 pts] Write an objective function f(S1, . . . , SK ,w1, . . . ,wK) to be minimized to solve this problem. Use the
penalty ‖w>k x− y‖2 if the point (x, y) is assigned to model k. Your objective should be a sum of N terms, and
each data point should show up in exactly one of these terms.

f(S1, . . . , SK , w1, . . . , wK) =

K∑
k=1

∑
(x,y)∈Sk

‖w>k x− y‖2

(b) [3 pts] What is coordinate descent update for f with w1, . . . ,wK fixed? In other words, to which of the K
models should a point (x, y) be assigned?

Assign the point (x, y) to Sk if k = arg mink ‖w>k x− y‖2.

(c) [3 pts] Write the coordinate descent update for f with S1, . . . , SK fixed.

For a set S of (x, y) values, you should use the notation XS to denote the design matrix whose rows are the
x-values of the elements of S, and yS to denote the column vector of y-values of the elements of S.

wk = (X>Sk
XSk

)−1X>Sk
ySk
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Q6. [10 pts] Training set augmentation
In class, you learned that one way to encourage invariance of a model to certain transformations is to augment the
training set with extra examples perturbed according to those transformations. In this problem, you will examine
the behavior of a certain type of input perturbation for a probabilistic linear regression setting.

Consider the following general generative model for regression:

• x ∼ p(x), where p(x) is a distribution over input vectors x ∈ Rd
• y|x ∼ p(y|x), where p(y|x) is a distribution over output scalars y ∈ R given x

Assume that the relationship between y and x is well-modeled by a linear function y = w>x, where w ∈ Rd, so that
in the infinite dataset limit, the objective to be minimized for this regression problem is:

L0(w) = E
[
(w>x− y)2

]
Now suppose the inputs are perturbed by zero-mean Gaussian noise ε ∼ N (0, λI), which is independent of the
training data. The new objective is

L(w) = E
[
(w>(x + ε)− y)2

]
(a) [9 pts] Compute and simplify L(w). Show all your work in detail, and write your answer in terms of L0.

L(w) = E
[
(w>(x+ ε)− y)2

]
= E

[
((w>x− y) + w>ε)2

]
= E

[
(w>x− y)2 + 2(w>x− y)w>ε+ w>εε>w

]
= E

[
(w>x− y)2

]
+ E

[
2(w>x− y)w>

]
E[ε] + w>E

[
εε>
]
w

Substituting E[ε] = 0 and E[εε>] = λI, this simplifies to

= L0(w) + λ‖w‖2

(b) [1 pt] Is there a relationship between this particular type of input perturbation and some type of regularization?
If so, what kind of regularizer is involved?

In this setting, regression assuming this type of input perturbation turns out to be equivalent to regression
with an L2 regularizer.
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Q7. [12 pts] Kernel PCA
You are given d-dimensional real-valued data {xi}Ni=1 and a feature mapping φ : Rd → Rm. In the following questions,
you will investigate how to do PCA in feature space on the feature vectors {φ(xi)}Ni=1. Assume that the data is

centered in feature space; that is,
∑N
i=1 φ(xi) = 0.

In the following, Φ is a design matrix whose ith row is φ(xi).

(a) [1 pt] Recall that as a part of PCA, we must solve the eigenvalue problem Sv = λv, where S proportional to

the sample covariance matrix. For PCA in feature space, we have S =
∑N
i=1 φ(xi)φ(xi)

> = Φ>Φ. Why is this
a problem if m is large?

Working in feature space directly is too expensive if m is large. The covariance matrix Φ>Φ is m×m, which
is too large to compute and work with.

(b) [3 pts] Now, you are given a kernel function k(x,x′) = φ(x) · φ(x′). Define the kernel matrix Kij = k(xi,xj).

Show that if λ 6= 0, then λ is an eigenvalue of S if and only if λ is also an eigenvalue of K (in other words,
finding feature-space principal components can be done by finding eigenvectors of K).

Notice that K = ΦΦ>. The nonzero eigenvalues of K = ΦΦ> and S = Φ>Φ are the same.

(c) [4 pts] Let v be an eigenvector of S with nonzero eigenvalue λ. Show that v can be written as v = Φ>αv,
where αv is an eigenvector of K with eigenvalue λ.

First, write Sv = Φ>Φv = λv. Multiplying this equation by Φ gives Kα = λα, where α = Φv. Then, since
Φ>α = Φ>Φv = Sv = λv, we have v = Φ>α/λ. Choosing αv = α/λ gives the desired result.

(d) [4 pts] You are given a new data point x ∈ Rd. Find the scalar projection of its feature representation φ(x)
onto v/‖v‖ (with v defined as above).

Write your answer in terms of αv and λ. Use the kernel k, and do not explicitly use φ. You should use the

notation kx =
[
k(x1,x) · · · k(xn,x)

]>
.

First, let’s calculate the squared norm of v:

‖v‖2 = v>v = α>v ΦΦ>αv = α>v Kαv = λ‖αv‖2

Then, the projection is:
v>φ(x)

‖v‖
=
α>v Φφ(x)√
λ‖αv‖

=
α>v kx√
λ‖αv‖

11



Q8. [14 pts] Autoencoder
An autoencoder is a neural network designed to learn feature representations in an unsupervised manner. Unlike a
standard multi-layer network, an autoencoder has the same number of nodes in its output layer as its input layer.
An autoencoder is not trained to predict some target value y given input x; rather, it is trained to reconstruct its
own input x, i.e. to minimize the reconstruction error. An autoencoder is shown below.

Input #1

Input #2

Input #3

Input #4

Output #1

Output #2

Output #3

Output #4

Hidden
layer
(L2)

Input
layer
(L1)

Output
layer
(L3)

Suppose the input is a set of P -dimensional unlabeled data {x(i)}Ni=1. Consider an autoencoder with H hidden units
in L2. We will use the following notation for this autoencoder:

• We denotes the P ×H weight matrix between L1 and L2

• Wd denotes the H × P weight matrix between L2 and L3

• σ denotes the activation function for L2 and L3

• s
(i)
j =

∑P
k=1W

e
kjx

(i)
k

• z
(i)
j = σ

(∑P
k=1W

e
kjx

(i)
k

)
• t

(i)
j =

∑H
k=1W

d
kjz

(i)
k

• x̂
(i)
j = σ

(∑H
k=1W

d
kjz

(i)
k

)
• J(We,Wd)(i) = ‖x(i) − x̂(i)‖22 =

∑P
j=1(x

(i)
j − x̂

(i)
j )2 is the reconstruction error for example x(i)

• J(We,Wd) =
∑N
i=1 J(We,Wd)(i) is the total reconstruction error

(We add element 1 to the input layer and hidden layer so that no bias term has to be considered.)

12



(a) [8 pts] Fill in the following derivative equations for We and Wd. Use the notation defined above; there should
be no new notation needed.

∂J (i)

∂W d
kl

=

P∑
j=1

 2(x̂
(i)
j − x

(i)
j ) ·

∂x̂
(i)
j

∂W d
kl


∂x̂

(i)
j

∂W d
kl

= σ′

(
P∑
k=1

W e
kjx

(i)
k

)
· z(i)k

∂J (i)

∂W e
kl

=
∂J (i)

∂s
(i)
j

· ∂s
(i)
j

∂W e
kl

= x
(i)
k

∂J (i)

∂s
(i)
j

=

H∑
k=1

∂J (i)

∂t
(i)
k

· W d
jk · σ′(s(i)j )



(b) [4 pts] To limit the number of activated hidden units, we add a sparsity penalty to the problem. The recon-
struction error is formulated as

Jsparse(W
e,Wd) = J(We,Wd) + β

H∑
j=1

KL(ρ‖ρ̂j)

where ρ̂j = 1
N

∑N
i=1 z

(i)
j , and ρ and β are hyperparameters. KL divergence is defined as

KL(ρ‖ρ̂j) = ρ log

(
ρ

ρ̂j

)
+ (1− ρ) log

(
1− ρ
1− ρ̂j

)

Write the following derivative updates for We and Wd.

∂Jsparse
∂W d

kl

=
∂J

∂W d
kl

+ 0

∂Jsparse
∂W e

kl

=
∂J

∂W e
kl

+ β ·
H∑
j=1

(− ρ
ρj

+ 1−ρ
1−ρj ) · 1

N

∑N
i=1(x

(i)
k σ

′
(
∑P
s=1W

e
sjx

(i)
k ))

(c) [2 pts] State some relations between autoencoders and PCA.

They are both feature representation learning methods. PCA is only linear transformation to the subspace
while autoencoder is nonlinear transformation to the hidden units. If the autoencoder’s activation functions
are linear, it is very similar to PCA method.
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Q1. [44 pts] True or False
(a) [2 pts] A neural network with multiple hidden layers and sigmoid nodes can form non-linear decision boundaries.

 True © False

(b) [2 pts] All neural networks compute non-convex functions of their parameters.

© True  False

(c) [2 pts] For logistic regression, with parameters optimized using a stochastic gradient method, setting parameters
to 0 is an acceptable initialization.

 True © False

(d) [2 pts] For arbitrary neural networks, with weights optimized using a stochastic gradient method, setting
weights to 0 is an acceptable initialization.

© True  False

(e) [2 pts] Given a design matrix X ∈ Rn×d, where d � n, if we project our data onto a k dimensional subspace
using PCA where k equals the rank of X, we recreate a perfect representation of our data with no loss.

 True © False

(f) [2 pts] Hierarchical clustering methods require a predefined number of clusters, much like k-means.

© True  False

(g) [2 pts] Given a predefined number of clusters k, globally minimizing the k-means objective function is NP-hard.

 True © False

(h) [2 pts] Using cross validation to select hyperparameters will guarantee that our model does not overfit.

© True  False

(i) [2 pts] A random forest is an ensemble learning method that attempts to lower the bias error of decision trees.

© True  False

(j) [2 pts] Bagging algorithms attach weights w1...wn to a set of N weak learners. They re-weight the learners and
convert them into strong ones. Boosting algorithms draw N sample distributions (usually with replacement)
from an original data set for learners to train on.

© True  False

(k) [2 pts] Given any matrix X, its singular values are the eigenvalues of XX> and X>X.

© True  False

(l) [2 pts] Given any matrix X, (XX> + λI)−1 for λ 6= 0 always exists.

© True  False

(m) [2 pts] Backpropagation is motivated by utilizing Chain Rule and Dynamic Programming to conserve mathe-
matical calculations.

 True © False

(n) [2 pts] An infinite depth binary Decision Tree can always achieve 100% training accuracy, provided that no
point is mislabeled in the training set.

 True © False

(o) [2 pts] In One vs All Multi-Class Classification in SVM, we are trying to classify an input data point X as one
of the N classes (C1...Cn), each of which has a parameter vector ~w1... ~wn. We classify point X as the class Ci
which maximizes the inner product of X and ~wi.  True © False
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(p) [2 pts] The number of parameters in a parametric model is fixed, while the number of parameters in a non-
parametric model grows with the amount of training data.

 True © False

(q) [2 pts] As model complexity increases, bias will decrease while variance will increase.

 True © False

(r) [2 pts] Consider a cancer diagnosis classification problem where almost all of the people being diagnosed don’t
have cancer. The probability of correct classification is the most important metric to optimize.

© True  False

(s) [2 pts] For the 1-Nearest Neighbors algorithm, as the number of data points increases to infinity in our dataset,
the error of our algorithm is guaranteed to be bounded by twice the Bayes Risk.

 True © False

(t) [2 pts] Increasing the dimensionality of our data always decreases our misclassification rate.

© True  False

(u) [2 pts] It is possible to represent a XOR function with a neural network without a hidden layer.

© True  False

(v) [2 pts] At high dimensionality, the KD tree speedup to the nearest neighbor can be slower than the naive
nearest neighbor implementation.

 True © False
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Q2. [33 pts] Multiple Choice
(a) [3 pts] Given a Neural Net with N input nodes, no hidden layers, one output node, with Entropy Loss and

Sigmoid Activation Functions, which of the following algorithms (with the proper hyper-parameters and ini-
tialization) can be used to find the global optimum?

© Simulated Annealing (Gradient Descent with
restarts)

© Stochastic Gradient Descent

© Mini-Batch Gradient Descent

© Batch Gradient Descent

 All of the above

© None of the above

(b) [3 pts] Given function f(x) = |x2 + 3| − 1 defined on R:

 Newtons Method on minimizing gradients will
always converge to the global optimum in one it-
eration from any starting location

© Stochastic Gradient Descent will always con-
verge to the global optimum in one iteration

© The problem is nonconvex, so it not feasible
to find a solution.

© All of the above

© None of the above

(c) [3 pts] Daniel wants to minimize a convex loss function f(x) using stochastic gradient descent. Given a random
starting point, mark the condition that would guarantee that stochastic gradient descent will converge to the
global optimum. Let ηt = step size at iteration t.

© ηt < 0

© Constant step size ηt

 Decreasing step size ηt = 1√
t

© Decreasing step size ηt = 1
t2

© All of the above

© None of the above

(d) [3 pts] Which of the following is true of logistic regression?

© It can be motivated by ”log odds”

© The optimal weight vector can be found using
MLE.

© It can be used with L1 regularization

 All of the above

© None of the above

(e) [3 pts] You’ve just finished training a decision tree for spam classification, and it is getting abnormally bad
performance on both your training and test sets. You know that your implementation has no bugs, so what
could be causing the problem?

 Your decision trees are too shallow.

© You need to increase the learning rate.

© You are overfitting.

© All of the above.

(f) [3 pts] The numerical output of a sigmoid node in a neural network:

© Is unbounded, encompassing all real numbers.

© Is unbounded, encompassing all integers.

 Is bounded between 0 and 1.

© Is bounded between -1 and 1.
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(g) [3 pts] If n is the number of points in the training set, regular nearest neighbor (without KD trees, hashing,
etc) has a classification runtime of:

© O(1)

© O(log n)

 O(n)

© O(n2)

(h) [3 pts] Consider the p-norm of a vector x defined using the notation ‖x‖p. Also note that α is a scalar. Which
of the following is true?

© ‖x‖p + ‖y‖p ≥ ‖x+ y‖p.

© ‖αx‖p = |α|‖x‖p.

© ‖x‖p = 0 implies x is the zero vector.

 All of the above.

(i) [3 pts] What are some practical problems with the sigmoidal activation function in neural nets?

© It is convex, and convex functions cannot solve
nonconvex problems

© It does not work well with the entropy loss
function

© It can have negative values

 Gradients are small for values away from 0,
leading to the ”Vanishing Gradient” problem for
large or recurrent neural nets

(j) [3 pts] In Homework 4, you fit a logistic regression model on spam and ham data for a Kaggle Competition.
Assume you had a very good score on the public test set, but when the GSIs ran your model on a private
test set, your score dropped a lot. This is likely because you overfitted by submitting multiple times and
changing which of the following between submissions: A) λ, your penalty term; B) η, your step size; C) ε, your
convergence criterion; or D) Fixing a random bug:

© A

© B

© A and B

© A, B, and C

© C and D

 A, B, C, and D

(k) [3 pts] With access to an n-by-n matrix of pairwise data distances, but no access to the data itself, we can use
which of the following clustering techniques: A) k-means; B) k-medoids; C) hierarchical clustering:

© A

© B

© C

© A and B

 B and C

© A, B, and C

(l) [0 pts] What was your favorite class of the semester year all time?

 CS 189 - Introduction to Machine Learning

 CS 189 - Classify EVERYTHING

 CS 189 - Advanced MATLAB and Numpy

 CS 189 - Kaggle Competitions for Dummies

 All of the above

 None of the above (Choose this if you dare...)
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Q3. [9 pts] Decision Theory
We are given a test that is designed to predict whether a patient y has cancer C+ or not C−. The test returns a
value x ∈ R and we know the probability of the patient having cancer given the test results:

p(y = C+|x) =


0, if x < 0

x, if 0 ≤ x < 1

1, if 1 ≤ x

p(y = C+|x)

x

1

1

We also know that it is three times more costly to have a false negative than a false positive. Specifically, the loss
matrix is:

Predicted:

Truth:

C− C+

C− 0 10
C+ 30 0

Suppose that we choose a fixed value x∗, and we predict C+ if the test result is greater than x∗ and C− otherwise.

(a) [2 pts] What is the decision boundary (value of x) that minimizes the misclassification probability?

x = 1/2 minimizes the classification boundary.

We want to choose x such that the probability of C+ given x is the same as the probability of C− given x:

P (y = C+|x) = P (y = C−|x)

x = 1− x
x = 1/2

(b) [3 pts] What is the decision boundary (value of x∗) that minimizes the risk?

x∗ = 1/4 minimizes the risk.

Choose x∗ such that the risk of choosing C+ given x is the same as the risk of choosing of C− given x:

R(ŷ = C+|x∗) = R(ŷ = C−|x∗)
`(C+, C+)P (y = C−|x∗) + `(C+, C−)P (y = C−|x∗) = `(C−, C+)P (y = C+|x∗) + `(C−, C−)P (y = C−|x∗)

`(C+, C−)P (y = C−|x∗) = `(C−, C+)P (y = C+|x∗)
10(1− x∗) = 30x∗

x∗ = 1/4

(c) [4 pts] If the test result is uniformly distributed in the interval [−1, 1], what is the value of the minimum risk?
Write your answer in terms of x∗ (to avoid loss of points if your x∗ is incorrect).
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E`(ŷ, y) = EE[`(ŷ, y)|x]

=

∫ ∞
−∞

1[ŷ = C−]`(C−, C+)P (y = C+, x) + 1[ŷ = C+]`(C+, C−)P (y = C−, x)dx

=

∫ ∞
−∞

1[ŷ = C−]`(C−, C+)P (y = C+|x)P (x) + 1[ŷ = C+]`(C+, C−)P (y = C−|x)P (x)dx

=

∫ x∗

0

1

2
`(C−, C+)P (y = C+|x)dx+

∫ 1

x∗

1

2
`(C+, C−)P (y = C−|x)dx

=
1

2

∫ x∗

0

30xdx+

∫ 1

x∗
10(1− x)dx

=
1

2

(
15x2

]x∗

0
+ 10x− 5x2

]1
x∗

)
=

1

2

(
15x∗2 + 5− 10x∗ + 5x∗2

)
= 10x∗2 − 5x∗ + 2.5 =

15

8
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Q4. [8 pts] Parameter Estimation
Suppose you are given n observations, X1, ..., Xn, independent and identically distributed with a Gamma(α, λ)
distribution. The following information might be useful for one or more parts of the problem.

• If X ∼ Gamma(α, λ), then E[X] =
α

λ
and E[X2] =

α(α+ 1)

λ2

• The probability density function of X ∼ Gamma(α, λ) is fX(x) =
1

Γ(α)
λαxα−1e−λx where the function Γ is

only dependent on α and not λ.

The following notation might be useful for one or more parts of the problem: X1 =
1

n

n∑
i=1

Xi and X2 =
1

n

n∑
i=1

X2
i .

(a) [4 pts] Find the estimators for α and λ using the method of moments. Remember you are trying to write α
and λ as functions of the data.

First, we take the sample moments from the data, X1, X2 and equate that to the theoretical moments,
E[X],E[X2].

X1 =
α

λ

X2 =
α(α+ 1)

λ2

Solving for α and λ from this system of equations, we get

α̂MM =
X

2

1

X2 −X
2

1

=
X

2

1

σ̂2

λ̂MM =
X1

X2 −X
2

1

=
X1

σ̂2

(b) [4 pts] Suppose, we are given a known, fixed value for α. Compute the maximum likelihood estimator for λ.

We first write the likelihood function.

L(λ|X1, ..., Xn) =

n∏
i=1

1

Γ(α)
λαXα−1

i e−λXi

The log-likelihood function is given as follows.

l(λ|X1, ..., Xn) = −n log(Γ(α)) + nα log λ+

n∑
i=1

(α− 1) logXi − λXi

Next, we take the gradient with respect to λ and set it equal to 0.

∇λl(λ|X1, ..., Xn) =
nα

λ
−

n∑
i=1

Xi = 0

Solving for λ, we get,

λ̂MLE =
nα∑n
i=1Xi

=
α

1
n

∑n
i=1Xi

=
α

X1
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Q5. [14 pts] Locally Weighted Logistic Regression
In this problem, we consider solving the problem of locally weighted logistic regression. Given data {(xi, yi) ∈
Rd × {0, 1}}ni=1 and a query point x, we choose a parameter vector θ to minimize the loss (which is simply the
negative log likelihood, weighted appropriately):

l(θ;x) = −
n∑
i=1

wi(x) [yi log(µ(xi)) + (1− yi) log(1− µ(xi))]

where

µ(xi) =
1

1 + e−θ·xi
, wi(x) = exp

(
−‖x− xi‖

2

2τ

)
where τ is a hyperparameter that must be tuned. Note that whenever we receive a new query point x, we must solve
the entire problem again with these new weights wi(x).

Hint: the derivative of the logistic regression log likelihood with respect to θ is:
∑n
i=1(yi − µ(xi))xi

(a) [4 pts] Given a data point x, derive the gradient of l(θ;x) with respect to θ.

The derivation is extremely similar to the derivation of logistic regression as in the slides. The answer is

−Xᵀz = −
n∑
i=1

wi(x)(yi − µ(xi))xi

where X is the design matrix (i.e. every row in X is a data point), and zi = wi(x)(yi − µ(xi)).

(b) [4 pts] Given a data point x, derive the Hessian of l(θ;x) with respect to θ.

The derivation is extremely similar to the derivation of logistic regression as in the slides. The answer is

XTDX =

n∑
i=1

wi(x)µ(xi)(1− µ(xi))xix
ᵀ
i

(c) [2 pts] Given a data point x, write the update formula for gradient descent. Use the symbol η for an arbitrary
step size.

θ(t+1) = θ(t) + ηXᵀz

(d) [2 pts] Given a data point x, write the update formula for Newton’s method.

θ(t+1) = θ(t) + [XTDX]−1Xᵀz

(e) [2 pts] Locally Weighted Logistic Regression is a

© Parametric method  Nonparametric method

9



Q6. [7 pts] Decision Trees
Answer the following questions related to decision trees.

(a) [3 pts] In Homework 5, you first implemented a decision tree and then implemented a decision forest, which
uses an ensemble method called bagging.

For neural network classification, it is typical to train k networks and average the results. Why not run your
decision tree (using all of the data) k times and then average the results?

Decision trees return the same result each time you run them.

(b) [2 pts] True or false: Selecting the decision tree split (at each node as you move down the tree) that minimizes
classification error will guarantee an optimal decision tree.

© True  False

(c) [2 pts] True or false: Selecting the decision tree split (at each node as you move down the tree) that maximizes
information gain will guarantee an optimal decision tree.

© True  False
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Q7. [11 pts] Convolutional Neural Nets
Below is a diagram of a small convolutional neural network that converts a 13x13 image into 4 output values. The
network has the following layers/operations from input to output: convolution with 3 filters, max pooling, ReLu, and
finally a fully-connected layer. For this network we will not be using any bias/offset parameters (b). Please answer
the following questions about this network.

Convolution 
3 Filters 4x4 

Stride 1 

Max Pooling 
2x2 

Stride 2 

Fully- 
Connected 

13x13 3@10x10 
3@5x5 4x1 

(a) [2 pts] How many weights in the convolutional layer do we need to learn?

48 weights. Three filters with 4x4=16 weights each.

(b) [2 pts] How many ReLu operations are performed on the forward pass?

75 ReLu operations. ReLu is performed after the pooling step. ReLu is performed on each pixel of the three
5x5 feature images.

(c) [2 pts] How many weights do we need to learn for the entire network?

348 weights. 48 for the convolutional layer. Fully-connected has 3x5x5=75 pixels each connected to four
outputs, which is 300 weights. Pooling layer does not have any weights.

(d) [2 pts] True or false: A fully-connected neural network with the same size layers as the above network (13x13
→ 3x10x10 → 3x5x5 → 4x1) can represent any classifier that the above convolutional network can represent.

 True © False

(e) [3 pts] What is the disadvantage of a fully-connected neural network compared to a convolutional neural network
with the same size layers?

Too many weights to effectively learn.
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Q8. [9 pts] Streaming k-means
The standard k-means algorithm loads all data points altogether into the memory. In practice, data usually comes in
a stream, such that they are sequentially processed and dropped (not stored in memory). The advantage of streaming
algorithms is that their memory requirement is independent of the stream length. Thus, streaming algorithms are
very useful in processing data that cannot fit into the memory.

In this problem, we will explore how to extend the k-means algorithm to process streaming data. Suppose that there
are k clusters. The cluster centers are randomly initialized. Once the processor receives a data point x ∈ Rd, it does
the following:

1. Find the cluster whose center is the closest to x (in Euclidean distance), then add x to the cluster

2. Adjust the cluster center so that it equals the mean of all cluster members.

The algorithm outputs the k cluster centres after processing all data points in the stream.

According to the above algorithm specification, complete the streaming algorithm for k-means. Note that the
algorithm’s memory requirement should be independent of the stream length.

(a) [3 pts] List the variables that are stored in the memory and their initial values. Which variables should be the
output of the algorithm?

Two sets of variables need to be stored:

• ci: the center of the i-th cluster (i = 1, . . . , k). It is a d-dimensional vector and should be randomly
initialized in Rd.

• ni: the number of data points that belong to the i-th cluster. It should be initialized by 0.

The algorithm’s output should be ci (i = 1, . . . , k).

(b) [3 pts] When the processor receives a data point x, state the updates that are made on the variables.

The algorithm executes the following three steps:

1. Find the index i which minimizes ‖x− ci‖2 for i = 1, . . . , k.

2. Update ci ← (nici + x)/(ni + 1).

3. Update ni ← ni + 1.

(c) [3 pts] In each iteration, suppose the processor receives a data point x along with its weight w > 0. We want the
cluster center to be the weighted average of all cluster members. How do you modify the updates in question
(b) to process weighted data?

With weighted data, the algorithm executes the following three steps:

1. Find the index i which minimizes ‖x− ci‖2 for i = 1, . . . , k.

2. Update ci ← (nici + wx)/(ni + w).

3. Update ni ← ni + w.
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Q9. [15 pts] Low Dimensional Decompositions

Given a design matrix X ∈ Rn×d with n > d, we can create a low dimensional decomposition approximation X̃ = BC,
where X̃ ∈ Rn×d, B ∈ Rn×k, C ∈ Rk×d, and k < d. The following figure shows a diagram of X approximated by B
times C:

X 

n x d 

≈ 
B 

n x k 

C 

k x d 

We can formulate several low dimensional techniques from CS 189 as solving the following optimization, subject to
various constraints:

min
B,C
‖X −BC‖2F , (1)

where ‖ · ‖2F denotes the squared Frobenius norm of a matrix, that is, the sum of its squared entries.

(a) [2 pts] Which machine learning technique corresponds to solving (1) with constraint C1: each row of B is a
vector ei (a vector of all zeros, except a one in position i)?

 k-means © k-medoids © SVD of X

(b) [3 pts] Describe the B and C matrices that result from solving (1) with constraint C1.

The rows of C are the cluster centers (the means) and the rows of B indicate which cluster each point belongs
to.

(c) [2 pts] Which machine learning technique corresponds to solving (1) with constraint C2: each column of B has
norm equal to one?

© k-means © k-medoids  SVD of X

(d) [3 pts] Describe the B and C matrices that result from solving (1) with constraint C2.

B is the first k left singular vectors of X and C is the transpose of the first k right singular vectors of X scaled
by the first k signular values of X.

X = UΣV T , B = Uk, and C = ΣkV
T
k .

(e) [2 pts] Which machine learning technique corresponds to solving (1) with the constraints C3: each row of C is
one of the rows from X and each row of B is a vector ei (a vector of all zeros, except a one in position i)?

© k-means  k-medoids © SVD of X

(f) [3 pts] Describe the B and C matrices that result from solving (1) with constraints C3.

The rows of C are the medoids (points from X representing the cluster centers) and the rows of B indicate
which cluster each point belongs to.
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Q1. [90 pts] Multiple Choice
Check the boxes for ALL CORRECT CHOICES. Every question should have at least one box checked. NO PARTIAL
CREDIT: the set of all correct answers (only) must be checked.

(1) [3 pts] What strategies can help reduce overfitting in decision trees?

� Pruning

� Make sure each leaf node is one pure class

� Enforce a minimum number of samples in leaf
nodes

� Enforce a maximum depth for the tree

(2) [3 pts] Which of the following are true of convolutional neural networks (CNNs) for image analysis?

� Filters in earlier layers tend to include edge
detectors

� Pooling layers reduce the spatial resolution of
the image

� They have more parameters than fully-
connected networks with the same number of lay-
ers and the same numbers of neurons in each layer

� A CNN can be trained for unsupervised learn-
ing tasks, whereas an ordinary neural net cannot

(3) [3 pts] Neural networks

� optimize a convex cost function

� can be used for regression as well as classifica-
tion

� always output values between 0 and 1

� can be used in an ensemble

(4) [3 pts] Which of the following are true about generative models?

� They model the joint distribution P (class =
C AND sample = x)

� They can be used for classification

� The perceptron is a generative model

� Linear discriminant analysis is a generative
model

(5) [3 pts] Lasso can be interpreted as least-squares linear regression where

� weights are regularized with the `1 norm

� weights are regularized with the `2 norm

� the weights have a Gaussian prior

� the solution algorithm is simpler

(6) [3 pts] Which of the following methods can achieve zero training error on any linearly separable dataset?

� Decision tree

� Hard-margin SVM

� 15-nearest neighbors

� Perceptron

(7) [3 pts] The kernel trick

� can be applied to every classification algorithm

� changes ridge regression so we solve a d × d
linear system instead of an n×n system, given n
sample points with d features

� is commonly used for dimensionality reduction

� exploits the fact that in many learning al-
gorithms, the weights can be written as a linear
combination of input points
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(8) [3 pts] Suppose we train a hard-margin linear SVM on n > 100 data points in R2, yielding a hyperplane with
exactly 2 support vectors. If we add one more data point and retrain the classifier, what is the maximum
possible number of support vectors for the new hyperplane (assuming the n+ 1 points are linearly separable)?

� 2

� 3

� n

� n+ 1

(9) [3 pts] In latent semantic indexing, we compute a low-rank approximation to a term-document matrix. Which
of the following motivate the low-rank reconstruction?

� Finding documents that are related to each
other, e.g. of a similar genre

� In many applications, some principal compo-
nents encode noise rather than meaningful struc-
ture

� The low-rank approximation provides a loss-
less method for compressing an input matrix

� Low-rank approximation enables discovery of
nonlinear relations

(10) [3 pts] Which of the following are true about subset selection?

� Subset selection can substantially decrease the
bias of support vector machines

� Ridge regression frequently eliminates some of
the features

� Subset selection can reduce overfitting

� Finding the true best subset takes exponential
time

(11) [3 pts] In neural networks, nonlinear activation functions such as sigmoid, tanh, and ReLU

� speed up the gradient calculation in backprop-
agation, as compared to linear units

� are applied only to the output units

� help to learn nonlinear decision boundaries

� always output values between 0 and 1

(12) [3 pts] Suppose we are given data comprising points of several different classes. Each class has a different
probability distribution from which the sample points are drawn. We do not have the class labels. We use
k-means clustering to try to guess the classes. Which of the following circumstances would undermine its
effectiveness?

� Some of the classes are not normally dis-
tributed

� Each class has the same mean

� The variance of each distribution is small in
all directions

� You choose k = n, the number of sample points

(13) [3 pts] Which of the following are true of spectral graph partitioning methods?

� They find the cut with minimum weight

� They use one or more eigenvectors of the
Laplacian matrix

� They minimize a quadratic function subject to
one constraint: the partition must be balanced

� The Normalized Cut was invented at Stanford

(14) [3 pts] Which of the following can help to reduce overfitting in an SVM classifier?

� Use of slack variables

� Normalizing the data

� High-degree polynomial features

� Setting a very low learning rate
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(15) [3 pts] Which value of k in the k-nearest neighbors algorithm generates the solid decision boundary depicted
here? There are only 2 classes. (Ignore the dashed line, which is the Bayes decision boundary.)

� k = 1

� k = 10

� k = 2

� k = 100

(16) [3 pts] Consider one layer of weights (edges) in a convolutional neural network (CNN) for grayscale images,
connecting one layer of units to the next layer of units. Which type of layer has the fewest parameters to be
learned during training? (Select one.)

� A convolutional layer with 10 3× 3 filters

� A max-pooling layer that reduces a 10 × 10
image to 5× 5

� A convolutional layer with 8 5× 5 filters

� A fully-connected layer from 20 hidden units
to 4 output units

(17) [3 pts] In the kernelized perceptron algorithm with learning rate ε = 1, the coefficient ai corresponding to a
training example xi represents the weight for K(xi, x). Suppose we have a two-class classification problem with
yi ∈ {1,−1}. If yi = 1, which of the following can be true for ai?

� ai = −1

� ai = 0

� ai = 1

� ai = 5

(18) [3 pts] Suppose you want to split a graph G into two subgraphs. Let L be G’s Laplacian matrix. Which of the
following could help you find a good split?

� The eigenvector corresponding to the second-
largest eigenvalue of L

� The eigenvector corresponding to the second-
smallest eigenvalue of L

� The left singular vector corresponding to the
second-largest singular value of L

� The left singular vector corresponding to the
second-smallest singular value of L

(19) [3 pts] Which of the following are properties that a kernel matrix always has?

� Invertible

� At least one negative eigenvalue

� All the entries are positive

� Symmetric
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(20) [3 pts] How does the bias-variance decomposition of a ridge regression estimator compare with that of ordinary
least squares regression? (Select one.)

� Ridge has larger bias, larger variance

� Ridge has larger bias, smaller variance

� Ridge has smaller bias, larger variance

� Ridge has smaller bias, smaller variance

(21) [3 pts] Both PCA and Lasso can be used for feature selection. Which of the following statements are true?

� Lasso selects a subset (not necessarily a strict
subset) of the original features

� PCA produces features that are linear combi-
nations of the original features

� PCA and Lasso both allow you to specify how
many features are chosen

� PCA and Lasso are the same if you use the
kernel trick

(22) [3 pts] Which of the following are true about forward subset selection?

� O(2d) models must be trained during the al-
gorithm, where d is the number of features

� It greedily adds the feature that most improves
cross-validation accuracy

� It finds the subset of features that give the
lowest test error

� Forward selection is faster than backward se-
lection if few features are relevant to prediction

(23) [3 pts] You’ve just finished training a random forest for spam classification, and it is getting abnormally bad
performance on your validation set, but good performance on your training set. Your implementation has no
bugs. What could be causing the problem?

� Your decision trees are too deep

� You are randomly sampling too many features
when you choose a split

� You have too few trees in your ensemble

� Your bagging implementation is randomly
sampling sample points without replacement

(24) [3 pts] Consider training a decision tree given a design matrix X =


6 3
2 7
9 6
4 2

 and labels y =


1
0
1
0

. Let f1 denote

feature 1, corresponding to the first column of X, and let f2 denote feature 2, corresponding to the second
column. Which of the following splits at the root node gives the highest information gain? (Select one.)

� f1 > 2

� f1 > 4

� f2 > 3

� f2 > 6

(25) [3 pts] In terms of the bias-variance decomposition, a 1-nearest neighbor classifier has than a
3-nearest neighbor classifier.

� higher variance

� lower variance

� higher bias

� lower bias
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(26) [3 pts] Which of the following are true about bagging?

� In bagging, we choose random subsamples of
the input points with replacement

� Bagging is ineffective with logistic regression,
because all of the learners learn exactly the same
decision boundary

� The main purpose of bagging is to decrease
the bias of learning algorithms.

� If we use decision trees that have one sample
point per leaf, bagging never gives lower training
error than one ordinary decision tree

(27) [3 pts] An advantage of searching for an approximate nearest neighbor, rather than the exact nearest neighbor,
is that

� it sometimes makes exhaustive search much
faster

� it sometimes makes searching in a k-d tree
much faster

� the nearest neighbor classifier is sometimes
much more accurate

� you find all the points within a distance of
(1 + ε)r from the query point, where r is the dis-
tance from the query point to its nearest neighbor

(28) [3 pts] In the derivation of the spectral graph partitioning algorithm, we relax a combinatorial optimization
problem to a continuous optimization problem. This relaxation has the following effects.

� The combinatorial problem requires an ex-
act bisection of the graph, but the continuous al-
gorithm can produce (after rounding) partitions
that aren’t perfectly balanced

� The combinatorial problem cannot be modi-
fied to accommodate vertices that have different
masses, whereas the continuous problem can

� The combinatorial problem requires finding
eigenvectors, whereas the continuous problem re-
quires only matrix multiplication

� The combinatorial problem is NP-hard, but
the continuous problem can be solved in polyno-
mial time

(29) [3 pts] The firing rate of a neuron

� determines how strongly the dendrites of the
neuron stimulate axons of neighboring neurons

� only changes very slowly, taking a period of
several seconds to make large adjustments

� is more analogous to the output of a unit in a
neural net than the output voltage of the neuron

� can sometimes exceed 30,000 action potentials
per second

(30) [3 pts] In algorithms that use the kernel trick, the Gaussian kernel

� gives a regression function or predictor func-
tion that is a linear combination of Gaussians cen-
tered at the sample points

� is less prone to oscillating than polynomials,
assuming the variance of the Gaussians is large

� is equivalent to lifting the d-dimensional sam-
ple points to points in a space whose dimension
is exponential in d

� has good properties in theory but is rarely
used in practice

(31) 3 bonus points! The following Berkeley professors were cited in this semester’s lectures (possibly self-cited)
for specific research contributions they made to machine learning.

� David Culler

� Jitendra Malik

� Anca Dragan

� Michael Jordan

� Leo Breiman

� Jonathan Shewchuk

6



Q2. [8 pts] Feature Selection
A newly employed former CS 189/289A student trains the latest Deep Learning classifier and obtains state-of-the-art
accuracy. However, the classifier uses too many features! The boss is overwhelmed and asks for a model with fewer
features.

Let’s try to identify the most important features. Start with a simple dataset in R2.

(1) [4 pts] Describe the training error of a Bayes optimal classifier that can see only the first feature of the data.
Describe the training error of a Bayes optimal classifier that can see only the second feature.

The first feature yields a training error of 50% (like random guessing). The second feature offers a training error of
zero.

(2) [4 pts] Based on this toy example, the student decides to fit a classifier on each feature individually, then
rank the features by their classifier’s accuracy, take the best k features, and train a new classifier on those k
features. We call this approach variable ranking. Unfortunately, the classifier trained on the best k features
obtains horrible accuracy, unless k is very close to d, the original number of features!

Construct a toy dataset in R2 for which variable ranking fails. In other words, a dataset where a variable is
useless by itself, but potentially useful alongside others. Use + for data points in Class 1, and O for data points
in Class 2.

An XOR Dataset is unpredictable with either feature. (This extends to n-dimensions, with the n-bit parity string.)
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Q3. [10 pts] Gradient Descent for k-means Clustering
Recall the loss function for k-means clustering with k clusters, sample points x1, ..., xn, and centers µ1, ..., µk:

L =

k∑
j=1

∑
xi∈Sj

‖xi − µj‖2,

where Sj refers to the set of data points that are closer to µj than to any other cluster mean.

(1) [4 pts] Instead of updating µj by computing the mean, let’s minimize L with batch gradient descent while
holding the sets Sj fixed. Derive the update formula for µ1 with learning rate (step size) ε.

∂L

∂µ1
=

∂

∂µ1

∑
xi∈S1

(xi − µ1)>(xi − µ1)

=
∑

xi∈S1

2(µ1 − xi).

Therefore the update formula is

µ1 ← µ1 + ε
∑

xi∈S1

(xi − µ1).

(Note: writing 2ε instead of ε is fine.)

(2) [2 pts] Derive the update formula for µ1 with stochastic gradient descent on a single sample point xi. Use
learning rate ε.

µ1 ← µ1 + ε(xi − µ1) if xi ∈ S1, otherwise no change.

(3) [4 pts] In this part, we will connect the batch gradient descent update equation with the standard k-means
algorithm. Recall that in the update step of the standard algorithm, we assign each cluster center to be the
mean (centroid) of the data points closest to that center. It turns out that a particular choice of the learning
rate ε (which may be different for each cluster) makes the two algorithms (batch gradient descent and the
standard k-means algorithm) have identical update steps. Let’s focus on the update for the first cluster, with
center µ1. Calculate the value of ε so that both algorithms perform the same update for µ1. (If you do it right,
the answer should be very simple.)

In the standard algorithm, we assign µ1 ←
∑

xi∈S1

1
|S1|xi.

Comparing to the answer in (1), we set
∑

xi∈S1

1
|S1|xi = µ1 + ε

∑
xi∈S1

(xi − µ1) and solve for ε.

∑
xi∈S1

1

|S1|
xi −

∑
xi∈S1

1

|S1|
µ1 = ε

∑
xi∈S1

(xi − µ1)

∑
xi∈S1

1

|S1|
(xi − µ1) = ε

∑
xi∈S1

(xi − µ1).

Thus ε = 1
|S1| .

(Note: answers that differ by a constant factor are fine if consistent with answer for (1).)
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Q4. [10 pts] Kernels
(1) [2 pts] What is the primary motivation for using the kernel trick in machine learning algorithms?

If we want to map sample points to a very high-dimensional feature space, the kernel trick can save us from
having to compute those features explicitly, thereby saving a lot of time.

(Alternative solution: the kernel trick enables the use of infinite-dimensional feature spaces.)

(2) [4 pts] Prove that for every design matrix X ∈ Rn×d, the corresponding kernel matrix is positive semidefinite.

For every vector z ∈ Rn,
z>Kz = z>XX>z = |X>z|2,

which is clearly nonnegative.

(3) [2 pts] Suppose that a regression algorithm contains the following line of code.

w← w +X>MXX>u

Here, X ∈ Rn×d is the design matrix, w ∈ Rd is the weight vector, M ∈ Rn×n is a matrix unrelated to X,
and u ∈ Rn is a vector unrelated to X. We want to derive a dual version of the algorithm in which we express
the weights w as a linear combination of samples Xi (rows of X) and a dual weight vector a contains the
coefficients of that linear combination. Rewrite the line of code in its dual form so that it updates a correctly
(and so that w does not appear).

a← a +MXX>u

(4) [2 pts] Can this line of code for updating a be kernelized? If so, show how. If not, explain why.

Yes:
a← a +MKu

9



Q5. [12 pts] Let’s PCA

You are given a design matrix X =


6 −4
−3 5
−2 6

7 −3

. Let’s use PCA to reduce the dimension from 2 to 1.

(1) [6 pts] Compute the covariance matrix for the sample points. (Warning: Observe that X is not centered.)
Then compute the unit eigenvectors, and the corresponding eigenvalues, of the covariance matrix. Hint: If
you graph the points, you can probably guess the eigenvectors (then verify that they really are eigenvectors).

The covariance matrix is X>X =

[
82 −80
−80 82

]
.

Its unit eigenvectors are

[
1√
2
1√
2

]
with eigenvalue 2 and

[
1√
2

− 1√
2

]
with eigenvalue 162. (Note: either eigenvector

can be replaced with its negation.)

(2) [3 pts] Suppose we use PCA to project the sample points onto a one-dimensional space. What one-dimensional
subspace are we projecting onto? For each of the four sample points in X (not the centered version of X!),
write the coordinate (in principal coordinate space, not in R2) that the point is projected to.

We are projecting onto the subspace spanned by

[
1√
2

− 1√
2

]
. (Equivalently, onto the space spanned by

[
1
−1

]
. Equiva-

lently, onto the line x + y = 0.) The projections are (6,−4) → 10√
2
, (−3, 5) → − 8√

2
, (−2, 6) → − 8√

2
, (7,−3) → 10√

2
.

(3) [3 pts] Given a design matrix X that is taller than it is wide, prove that every right singular vector of X with
singular value σ is an eigenvector of the covariance matrix with eigenvalue σ2.

If v is a right singular vector of X, then there is a singular value decomposition X = UDV > such that v is a column
of V . Here each of U and V has orthonormal columns, V is square, and D is square and diagonal. The covariance
matrix is X>X = V DU>UDV > = V D2V >. This is an eigendecomposition of X>X, so each singular vector in V
with singular value σ is an eigenvector of X>X with eigenvalue σ2.
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Q6. [10 pts] Trees
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(1) [5 pts] Above, we have two depictions of the same k-d tree, which we have built to solve nearest neighbor
queries. Each node of the tree at right represents a rectangular box at left, and also stores one of the sample
points that lie inside that box. (The root node represents the whole plane R2.) If a treenode stores sample point
i, then the line passing through point i (in the diagram at left) determines which boxes the child treenodes
represent.

Simulate running an exact 1-nearest neighbor query, where the bold X is the query point. Recall that the query
algorithm visits the treenodes in a smart order, and keeps track of the nearest point it has seen so far.

• Write down the numbers of all the sample points that serve as the “nearest point seen so far” sometime
while the query algorithm is running, in the order they are encountered.
• Circle all the subtrees in the k-d tree at upper right that are never visited during this query. (This is why
k-d tree search is usually faster than exhaustive search.)

Nearest point seen so far: first 5, then 12, then 10.

The unvisited subtrees are rooted at 2, 13, 7, and 17.

(2) [5 pts] We are building a decision tree for a 2-class classification problem. We have n training points, each having
d real-valued features. At each node of the tree, we try every possible univariate split (i.e. for each feature, we
try every possible splitting value for that feature) and choose the split that maximizes the information gain.

Explain why it is possible to build the tree in O(ndh) time, where h is the depth of the tree’s deepest node.
Your explanation should include an analysis of the time to choose one node’s split. Assume that we can radix
sort real numbers in linear time.

Consider choosing the split at a node whose box contains n′ sample points. For each of the d features, we can sort
the sample points in O(n′d) time. Then we can compute the entropy for the first split (separating the first sample
in the sorted list from the others) in O(n′) time, then we can walk through the list and update the entropy for each
successive split in O(1) time, summing to a total of O(n′) time for each of the d features. So it takes O(n′d) time
overall to choose a split.

Each sample point participates in at most h treenodes, so each sample point contributes at most dh to the running
time, for a total running time of at most O(ndh).
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Q7. [10 pts] Self-Driving Cars and Backpropagation
You want to train a neural network to drive a car. Your training data consists of grayscale 64×64 pixel images. The
training labels include the human driver’s steering wheel angle in degrees and the human driver’s speed in miles per
hour. Your neural network consists of an input layer with 64 × 64 = 4,096 units, a hidden layer with 2,048 units,
and an output layer with 2 units (one for steering angle, one for speed). You use the ReLU activation function for
the hidden units and no activation function for the outputs (or inputs).

(1) [2 pts] Calculate the number of parameters (weights) in this network. You can leave your answer as an
expression. Be sure to account for the bias terms.

4097× 2048 + 2049× 2

(2) [3 pts] You train your network with the cost function J = 1
2 |y − z|2. Use the following notation.

• x is a training image (input) vector with a 1 component appended to the end, y is a training label (input)
vector, and z is the output vector. All vectors are column vectors.
• r(γ) = max{0, γ} is the ReLU activation function, r′(γ) is its derivative (1 if γ > 0, 0 otherwise), and
r(v) is r(·) applied component-wise to a vector.
• g is the vector of hidden unit values before the ReLU activation functions are applied, and h = r(g) is

the vector of hidden unit values after they are applied (but we append a 1 component to the end of h).
• V is the weight matrix mapping the input layer to the hidden layer; g = V x.
• W is the weight matrix mapping the hidden layer to the output layer; z = Wh.

Derive ∂J/∂Wij .

∂J

∂Wij
= (z− y)>

∂z

∂Wij

= (zi − yi)hj

(3) [1 pt] Write ∂J/∂W as an outer product of two vectors. ∂J/∂W is a matrix with the same dimensions as W ;
it’s just like a gradient, except that W and ∂J/∂W are matrices rather than vectors.

∂J

∂W
= (z− y)h>

(4) [4 pts] Derive ∂J/∂Vij .

∂J

∂Vij
= (z− y)>

∂z

∂Vij

= (z− y)>W
∂h

∂Vij

= (z− y)>W [0, . . . , r′(gi)xj , . . . , 0]>

= ((z− y)>W )i r
′(gi)xj .

12



CS 189
Spring 2017

Introduction to
Machine Learning Final

• Please do not open the exam before you are instructed to do so.

• The exam is closed book, closed notes except your two page cheat sheet.

• Electronic devices are forbidden on your person, including cell phones, iPods, headphones, and laptops. Turn your
cell phone off and leave all electronics at the front of the room, or risk getting a zero on the exam.

• You have 3 hours.

• Please write your initials at the top right of each odd-numbered page (e.g., write “JS” if you are Jonathan Shewchuk).
Finish this by the end of your 3 hours.

• Mark your answers on the exam itself in the space provided. Do not attach any extra sheets.

• The total number of points is 150. There are 26 multiple choice questions worth 3 points each, and 7 written questions
worth a total of 72 points.

• For multiple answer questions, fill in the bubbles for ALL correct choices: there may be more than one correct choice,
but there is always at least one correct choice. NO partial credit on multiple answer questions: the set of all correct
answers must be checked.

First name

Last name

SID

First and last name of student to your left

First and last name of student to your right

1



Q1. [78 pts] Multiple Answer
Fill in the bubbles for ALL correct choices: there may be more than one correct choice, but there is always at least one correct
choice. NO partial credit: the set of all correct answers must be checked.

(1) [3 pts] Which of the following are NP-hard problems? Let X ∈ Rn×d be a design matrix, let y ∈ Rn be a vector of labels,
let L be the Laplacian matrix of some n-vertex graph, and let 1 = [1 1 . . . 1]>.

 minµ,y
∑k

i=1
∑

y j=i |X j − µi|
2 where each µi is the

mean of sample points assigned class i

© miny
∑k

i=1
∑

y j=i |X j − µi|
2 with each µi fixed

© miny∈Rn
1
4 y>Ly subject to |y|2 = n; 1>y = 0

 miny∈Rn
1
4 y>Ly subject to ∀ j, y j ∈ {−1,+1};

1>y = 0

(2) [3 pts] Which clustering algorithms permit you to decide the number of clusters after the clustering is done?

© k-means clustering

 agglomerative clustering with single linkage

 a k-d tree used for divisive clustering

© spectral graph clustering with 3 eigenvectors

(3) [3 pts] For which of the following does normalizing your input features influence the predictions?

© decision tree (with usual splitting method)

 Lasso

 neural network

 soft-margin support vector machine

(4) [3 pts] With the SVD, we write X = UDV>. For which of the following matrices are the eigenvectors the columns of U?

© X>X

 XX>

© X>XX>X

 XX>XX>

(5) [3 pts] Why is PCA sometimes used as a preprocessing step before regression?

 To reduce overfitting by removing poorly predic-
tive dimensions.

© To expose information missing from the input data.

 To make computation faster by reducing the di-
mensionality of the data.

© For inference and scientific discovery, we prefer
features that are not axis-aligned.

(6) [3 pts] Consider the matrix X =
∑r

i=1 αiuiv>i where each αi is a scalar and each ui and vi is a vector. It is possible that the
rank of X might be

© r + 1

 r

 r − 1

 0

(7) [3 pts] Why would we use a random forest instead of a decision tree?

© For lower training error.

 To reduce the variance of the model.

 To better approximate posterior probabilities.

© For a model that is easier for a human to interpret.
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(8) [3 pts] What tends to be true about increasing the k in k-nearest neighbors?

 The decision boundary tends to get smoother.

 The bias tends to increase.

© The variance tends to increase.

 As the number of sample points approaches in-
finity (with n/k → ∞), the error rate approaches less
than twice the Bayes risk (assuming training and test
points are drawn independently from the same distri-
bution).

(9) [3 pts] Which of the following statements are true about the entropy of a discrete probability distribution?

 It is a useful criterion for picking splits in decision
trees.

© It is a convex function of the class probabilities.

 It is maximized when the probability distribution
is uniform.

© It is minimized when the probability distribution
is uniform.

(10) [3 pts] A low-rank approximation of a matrix can be useful for

 removing noise.

 discovering latent categories in the data.

 filling in unknown values.

 matrix compression.

(11) [3 pts] Let L be the Laplacian matrix of a graph with n vertices. Let

β = min
y∈Rn

∀i,yi∈{−1,+1}
1>y=0

y>Ly and γ = min
y∈Rn

|y|2=n
1>y=0

y>Ly.

Which of the following are true for every Laplacian matrix L?

 β ≥ γ

© β ≤ γ

© β > γ

© β < γ

(12) [3 pts] Which of the following are true about decision trees?

© They can be used only for classification.

© The tree depth never exceeds O(log n) for n sample
points.

© All the leaves must be pure.

 Pruning usually achieves better test accuracy than
stopping early.

(13) [3 pts] Which of the following is an effective way of reducing overfitting in neural networks?

 Augmenting the training data with similar syn-
thetic examples

 Weight decay (i.e., `2 regularization)

© Increasing the number of layers

 Dropout

(14) [3 pts] If the VC dimension of a hypothesis classH is an integer D < ∞ (i.e., VC(H) = D), this means

 there exists some set of D points shattered byH .

© all sets of D points are shattered by H.

 no set of D + 1 points is shattered byH .

 ΠH (D) = 2D.
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(15) [3 pts] Consider the minimizer w∗ of the `2-regularized least squares objective J(w) = |Xw−y|2 +λ|w|2 with λ > 0. Which
of the following are true?

© Xw∗ = y

© w∗ = X+y, where X+ is the pseudoinverse of X

© w∗ exists if and only if X>X is nonsingular

 The minimizer w∗ is unique

(16) [3 pts] You are training a neural network, but the training error is high. Which of the following, if done in isolation, has
a better-than-tiny chance of reducing the training error?

 Adding another hidden layer

 Normalizing the input data

 Adding more units to hidden layers

© Training on more data

(17) [3 pts] Filters in the late layers of a convolutional neural network designed to classify objects in photographs likely
represent

© edge detectors.

 concepts such as “there is an animal.”

 concepts such as “this image contains wheels.”

© concepts such as “Jen is flirting with Dan.”

(18) [3 pts] Which of the following techniques usually speeds up the training of a sigmoid-based neural network on a classifi-
cation task?

© Using batch descent instead of stochastic

© Increasing the learning rate with every iteration

 Having a good initialization of the weights

 Using the cross-entropy loss instead of the mean
squared error

(19) [3 pts] In a soft-margin support vector machine, decreasing the slack penalty term C causes

© more overfitting.

 less overfitting.

© a smaller margin.

 less sensitivity to outliers.

(20) [3 pts] The shortest distance from a point z to a hyperplane w>x = 0 is

© w>z

 w>z
|w|

© w>z
|w|2

© |w| · |z|

(21) [3 pts] The Bayes decision rule

 does the best a classifier can do, in expectation

© can be computed exactly from a large sample

 chooses the class with the greatest posterior prob-
ability, if we use the 0-1 risk function

 minimizes the risk functional

(22) [3 pts] Which of the following are techniques commonly used in training neural nets?

© linear programming

 backpropagation

© Newton’s method

 cross-validation
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(23) [3 pts] Which of these statements about learning theory are correct?

 The VC dimension of halfplanes is 3.

© For a fixed set of training points, the more di-
chotomies Π we have, the higher the probability that
the training error is close to the true risk.

© The VC dimension of halfspaces in 3D is∞.

 For a fixed hypothesis class H , the more train-
ing points we have, the higher the probability that the
training error is close to the true risk.

(24) [3 pts] Which of the following statements are true for a design matrix X ∈ Rn×d with d > n? (The rows are n sample
points and the columns represent d features.)

© Least-squares linear regression computes the
weights w = (X>X)−1X>y.

© X has exactly d − n eigenvectors with eigenvalue
zero.

© The sample points are linearly separable.

 At least one principal component direction is or-
thogonal to a hyperplane that contains all the sample
points.

(25) [3 pts] Which of the following visuals accurately represent the clustering produced by greedy agglomerative hierarchical
clustering with centroid linkage on the set of feature vectors {(-2, -2), (-2, 0), (1, 3), (2, 2), (3, 4)}?

©

x

y

−4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

4

5

•

•

•

•

•

 

x

y

−4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

4

5

•

•

•

•

•

 (-2, -2) (-2, 0) (1, 3) (2, 2) (3, 4)

©
(-2, -2) (-2, 0) (1, 3) (2, 2) (3, 4)

(26) [3 pts] Which of the following statements is true about the standard k-means clustering algorithm?

© The random partition initialization method usually
outperforms the Forgy method.

 After a sufficiently large number of iterations, the
clusters will stop changing.

© It is computationally infeasible to find the optimal
clustering of n = 15 points in k = 3 clusters.

© You can use the metric d(x, y) =
x·y
|x|·|y| .
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Q2. [9 pts] A Miscellany
(a) [3 pts] Consider a convolutional neural network for reading the handwritten MNIST letters, which are 28 × 28 images.

Suppose the first hidden layer is a convolutional layer with 20 different 5 × 5 filters, applied to the input image with a
stride of 1 (i.e., every filter is applied to every 5 × 5 patch of the image, with patches allowed to overlap). Each filter has
a bias weight. How many weights (parameters) does this layer use?

20 × (5 × 5 + 1) = 520.

(b) [3 pts] Let X be an n × d design matrix representing n sample points in Rd. Let X = UDV> be the singular value
decomposition of X. We stated in lecture that row i of the matrix UD gives the coordinates of sample point Xi in principal
coordinates space, i.e., Xi · v j for each j, where Xi is the ith row of X and v j is the jth column of V . Show that this is true.

As V is an orthogonal matrix, we can write XV = UDV>V = UD.

By the definition of matrix multiplication, (UD)i j = Xi · v j.

(c) [3 pts] Let x, y ∈ Rd be two points (e.g., sample or test points). Consider the function k(x, y) = x>rev(y) where rev(y)

reverses the order of the components in y. For example, rev


123


 =

321
. Show that k cannot be a valid kernel function.

Hint: remember how the kernel function is defined, and show a simple two-dimensional counterexample.

We have that k((−1, 1), (−1, 1)) = −2, but this is impossible as, if k is a valid kernel, then there is some function Φ such
that k(x, x) = Φ(x)>Φ(x) ≥ 0.
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Q3. [10 pts] Maximum Likelihood Estimation for Reliability
Testing
Suppose we are reliability testing n units taken randomly from a population of identical appliances. We want to estimate the
mean failure time of the population. We assume the failure times come from an exponential distribution with parameter λ > 0,
whose probability density function is f (x) = λe−λx (on the domain x ≥ 0) and whose cumulative distribution function is
F(x) =

∫ x
0 f (x) dx = 1 − e−λx.

(a) [6 pts] In an ideal (but impractical) scenario, we run the units until they all fail. The failure times are t1, t2, . . . , tn.

Formulate the likelihood function L(λ; t1, . . . , tn) for our data. Then find the maximum likelihood estimate λ̂ for the
distribution’s parameter.

L(λ; t1, . . . , tn) =

n∏
i=1

f (ti) =

n∏
i=1

λe−λti = λne−λ
∑n

i=1 ti

lnL(λ) = n ln λ − λ
n∑

i=1

ti

∂

∂λ
lnL(λ) =

n
λ
−

n∑
i=1

ti = 0

λ̂ =
n∑n

i=1 ti

(b) [4 pts] In a more realistic scenario, we run the units for a fixed time T . We observe r unit failures, where 0 ≤ r ≤ n, and
there are n − r units that survive the entire time T without failing. The failure times are t1, t2, . . . , tr.

Formulate the likelihood function L(λ; n, r, t1, . . . , tr) for our data. Then find the maximum likelihood estimate λ̂ for the
distribution’s parameter.

Hint 1: What is the probability that a unit will not fail during time T? Hint 2: It is okay to define L(λ) in a way that
includes contributions (densities and probability masses) that are not commensurate with each other. Then the constant
of proportionality of L(λ) is meaningless, but that constant is irrelevant for finding the best-fit parameter λ̂. Hint 3: If
you’re confused, for part marks write down the likelihood that r units fail and n−r units survive; then try the full problem.
Hint 4: If you do it right, λ̂ will be the number of observed failures divided by the sum of unit test times.

L(λ; n, r, t1, . . . , tr) ∝

 r∏
i=1

f (ti)

 (1 − F(T ))n−r

=

 r∏
i=1

λe−λti

 (e−λT
)n−r

= λre−λ
∑r

i=1 ti e−λ(n−r)T

lnL(λ) = r ln λ − λ
r∑

i=1

ti − λ(n − r)T + constant

∂

∂λ
lnL(λ) =

r
λ
−

r∑
i=1

ti − (n − r)T = 0

λ̂ =
r∑r

i=1 ti + (n − r)T
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Q4. [10 pts] Decision Trees
Consider the design matrix [

4 6 9 1 7 5
1 6 5 2 3 4

]>
representing 6 sample points, each with two features f1 and f2.

The labels for the data are [
1 0 1 0 1 0

]>
In this question, we build a decision tree of depth 2 by hand to classify the data.

(a) [2 pts] What is the entropy at the root of the tree?

−0.5 log2 0.5 − 0.5 log2 0.5 = 1

(b) [3 pts] What is the rule for the first split? Write your answer in a form like f1 ≥ 4 or f2 ≥ 3. Hint: you should be able to
eyeball the best split without calculating the entropies.

If we sort by f1, the features and the corresponding labels are[
1 4 5 6 7 9
0 1 0 0 1 1

]
.

If we sort by f2, we have [
1 2 3 4 5 6
1 0 1 0 1 0

]
.

The best split is f1 ≥ 7.

(c) [3 pts] For each of the two treenodes after the first split, what is the rule for the second split?

For the treenode with labels (1, 1), there’s no need to split again.

For the treenode with labels (0, 1, 0, 0), if we sort by f1, we have[
1 4 5 6
0 1 0 0

]
If we sort using f2, we get [

1 2 4 6
1 0 0 0

]
We easily see we should choose f2 ≥ 2.

(d) [2 pts] Let’s return to the root of the tree, and suppose we’re incompetent tree builders. Is there a (not trivial) split at the
root that would have given us an information gain of zero? Explain your answer.

Yes. The rules f1 ≥ 5, f2 ≥ 3, or f2 ≥ 5 would all fail to reduce the weighted average entropy below 1.
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Q5. [11 pts] Bagging and Random Forests
We are building a random forest for a 2-class classification problem with t decision trees and bagging. The input is a n × d
design matrix X representing n sample points in Rd (quantitative real-valued features only). For the ith decision tree we create
an n-point training set X(i) through standard bagging. At each node of each tree, we randomly select k of the features (this
random subset is selected independently for each treenode) and choose the single-feature split that maximizes the information
gain, compared to all possible single-feature splits on those k features. Assume that we can radix sort real numbers in linear
time, and we can randomly select an item from a set in constant time.

(a) [3 pts] Remind us how bagging works. How do we generate the data sets X(i)? What do we do with duplicate points?

For each training set X(i), we select n sample points from X uniformly at random with replacement. Duplicate points
have proportionally greater weight in the entropy (or other cost function) calculations. (We will accept an answer that
states that duplicate points are treated as if they were separate points infinitesimally close together.)

(b) [3 pts] Fill in the blanks to derive the overall running time to construct a random forest with bagging and random subset
selection. Let h be the height/depth (they’re the same thing) of the tallest/deepest tree in the forest. You must use the
tightest bounds possible with respect to n, d, t, k, h, and n′.

Consider choosing the split at a treenode whose box contains n′ sample points. We can choose the best split for
these n′ sample points in O( ) time. Therefore, the running time per sample point in that node
is O( ).

Each sample point in X(i) participates in at most O( ) treenodes, so each sample point contributes at
most O( ) to the time. Therefore, the total running time for one tree is O( ).

We have t trees, so the total running time to create the random forest is O( ).

The blanks in order: O(n′k), O(k), O(h), O(kh), O(nkh), O(nkht). They are each worth half a point.

(c) [2 pts] If we instead use a support vector machine to choose the split in each treenode, how does that change the asymp-
totic query time to classify a test point?

It slows queries down by a factor of Θ(d) or Θ(k) (depending whether you run the SVM on k features or all d features—
we’ll accept either interpretation), because it is necessary to inspect all d (or k) features of the query point at each
treenode.

(d) [3 pts] Why does bagging by itself (without random subset selection) tend not to improve the performance of decision
trees as much as we might expect?

It is common that the same few features tend to dominate in all of the subsets, so almost all the trees will tend to have
very similar early splits, and therefore all the trees will produce very similar estimates. The models are not decorrelated
enough.

9



Q6. [11 pts] One-Dimensional ConvNet Backprop
Consider this convolutional neural network architecture.

In the first layer, we have a one-dimensional convolution with a single filter of size 3 such that hi = s
(∑3

j=1 v jxi+ j−1

)
. The

second layer is fully connected, such that z =
∑4

i=1 wihi. The hidden units’ activation function s(x) is the logistic (sigmoid)
function with derivative s′(x) = s(x) (1 − s(x)). The output unit is linear (no activation function). We perform gradient descent
on the loss function R = (y − z)2, where y is the training label for x.

(a) [1 pt] What is the total number of parameters in this neural network? Recall that convolutional layers share weights.
There are no bias terms.

The answer is 7. There are 3 parameters in layer 1 and 4 parameters in layer 2.

(b) [4 pts] Compute ∂R/∂wi.

∂R
∂wi

= −2(y − z)hi

(c) [1 pt] Vectorize the previous expression—that is, write ∂R/∂w.

∂R
∂w

= −2(y − z)h

(d) [5 pts] Compute ∂R/∂v j.

∂R
∂v j

= −2(y − z)
∂z
∂v j

= −2(y − z)
4∑

i=1

∂z
∂hi

∂hi

∂v j
= −2(y − z)

4∑
i=1

wihi(1 − hi)xi+ j−1
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Q7. [11 pts] Spectral Graph Partitioning
(a) [3 pts] Write down the Laplacian matrix LG of the following graph G. Every edge has weight 1.



2 −1 −1 0 0 0 0
−1 2 −1 0 0 0 0
−1 −1 2 0 0 0 0
0 0 0 1 0 0 −1
0 0 0 0 1 −1 0
0 0 0 0 −1 1 0
0 0 0 −1 0 0 1


(b) [2 pts] Find three orthogonal eigenvectors of LG, all having eigenvalue 0.

x =



1
1
1
0
0
0
0


, y =



0
0
0
1
0
0
1


, z =



0
0
0
0
1
1
0


(c) [2 pts] Use two of those three eigenvectors (it doesn’t matter which two) to assign each vertex of G a spectral vector in
R2. Draw these vectors in the plane, and explain how they partition G into three clusters. (Optional alternative: if you
can draw 3D figures well, you are welcome to use all three eigenvectors and assign each vertex a spectral vector in R3.)

The eigenvectors x and y give the embedding

1, 2, 3 7→
[
1
0

]
, 4, 7 7→

[
0
1

]
, 5, 6 7→

[
0
0

]
.

Each of the three clusters is mapped to a single point in R2.

(d) [3 pts] Let Kn be the complete graph on n vertices (every pair of vertices is connected by an edge of weight 1) and let
LKn be its Laplacian matrix. The eigenvectors of LKn are v1 = 1 =

[
1 . . . 1

]>
and every vector that is orthogonal to 1.

What are the eigenvalues of LKn ?

λ1 = 0 and λ2 = · · · = λn = n.

(e) [1 pt] What property of these eigenvalues gives us a hint that the complete graph does not have any good partitions?

λ2 is large, so there is no low-sparsity cut. (The optimal cut has sparsity ≥ λ2/2.)
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Q8. [10 pts] We Hope You Learned This
Consider learning closed intervals on the real line. Our hypothesis class H consists of all intervals of the form [a, b] where
a < b and a, b ∈ R. We interpret an interval (hypothesis) [a, b] ∈ H as a classifier that identifies a point x as being in class C if
a ≤ x ≤ b, and identifies x as not being in class C if x < a or x > b.

(a) [2 pts] Consider a set containing two distinct points on the real line. Which such sets can be shattered byH?

All sets of two distinct points can be shattered.

(b) [2 pts] Show that no three points can be shattered byH .

Let X = {x1, x2, x3} with x1 ≤ x2 ≤ x3. No interval can contain x1 and x3 without containing x2. (I.e., suppose x1 and x3
are in class C, but x2 is not.)

(c) [2 pts] Write down the shatter function ΠH (n). Explain your answer.

ΠH (n) =

(
n
2

)
+ n + 1 =

n2 + n
2

+ 1.

There are
(

n
2

)
dichotomies with two or more points (imagine choosing the first and the last sample point in class C), n

dichotomies with one point, and one dichotomy with no points.

(d) [2 pts] Consider another hypothesis classH2. Each hypothesis inH2 is a union of two intervals. H2 is the set of all such
hypotheses (i.e., every union of two intervals on the number line). For example, [3, 7] ∪ [8.5, 10] ∈ H2; that’s the set of
all points x such that 3 ≤ x ≤ 7 or 8.5 ≤ x ≤ 10.

What is the largest number of distinct points thatH2 can shatter? Explain why no larger number can be shattered.

Four. If you have five distinct points, H2 cannot include the first, third, and fifth points while excluding the second and
fourth.

(e) [2 pts] Which hypothesis class has a greater sample complexity,H orH2? Explain why.

H2, because its shatter function grows faster (quartic rather than quadratic) and its VC dimension is greater.
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Q1. [78 pts] Multiple Answer
Fill in the bubbles for ALL correct choices: there may be more than one correct choice, but there is always at least one correct
choice. NO partial credit: the set of all correct answers must be checked.

(a) [3 pts] Which of the following algorithms can learn nonlinear decision boundaries? The decision trees use only axis-
aligned splits.

 A depth-five decision tree

 Quadratic discriminant analysis (QDA)

 AdaBoost with depth-one decision trees

© Perceptron

The solutions are obvious other than AdaBoost with depth-one decision trees, where you can form non-linear boundaries due
to the final classifier not actually being a linear combination of the linear weak learners.

(b) [3 pts] Which of the following classifiers are capable of achieving 100% training accuracy on the data below? The
decision trees use only axis-aligned splits.

© Logistic regression

 A neural network with one hidden layer

© AdaBoost with depth-one decision trees

 AdaBoost with depth-two decision trees

top left: Each weak learner will either classify the points from each pair in different classes, or classify every point in the same
class. Since the meta classifier is a weighted sum of all of these weak classifiers, each which has a 50% training accuracy, the
meta classifier cannot have 100% accuracy.

top right: A neural network with one hidden layer (with enough units) is a universal function approximator.

lower left: Logistic regression finds a linear decision boundary, which cannot separate the data.

lower right: A depth two decision tree can fully separate the data.

(c) [3 pts] Which of the following are true of support vector machines?

 Increasing the hyperparameter C tends to decrease
the training error

© The hard-margin SVM is a special case of the soft-
margin with the hyperparameter C set to zero

 Increasing the hyperparameter C tends to decrease
the margin

© Increasing the hyperparameter C tends to decrease
the sensitivity to outliers

Top left: True, from the lecture notes.

Bottom left: False, Hard-margin SVM is where C tends towards infinity.

Top right: false, perceptron is trained using gradient descent and SVM is trained using a quadratic program.
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Bottom right: True: slack becomes less expensive, so you allow data points to be farther on the wrong side of the margin and
make the margin bigger. Doing this will never reduce the number of data points inside the margin.

(d) [3 pts] Let r(x) be a decision rule that minimizes the risk for a three-class classifier with labels y ∈ {0, 1, 2} and an
asymmetric loss function. What is true about r(·)?

© ∀y ∈ {0, 1, 2}, ∃x : r(x) = y

 If we don’t have access to the underlying data dis-
tribution P(X) or P(Y |X), we cannot exactly compute
the risk of r(·)

© ∀x, r(x) is a class y that maximizes the posterior
probability P(Y = y|X = x)

 If P(X = x) changes but P(Y = y|X = x) remains
the same for all x, y, r(X) still minimizes the risk

top left: it is possible that r(X) is the same for all X.

top right: no, because the risk is asymmetric

lower left: by definition of risk we need to be able to compute expectations over these two distributions.

lower right: Given that r(X) has no constraint, it can pick the y that minimizes risk for every X = x without trade-offs. Therefore,
if only the marginals change, that choice is not affected.

(e) [3 pts] Which of the following are true about two-class Gaussian discriminant analysis? Assume you have estimated the
parameters µ̂C, Σ̂C, π̂C for class C and µ̂D, Σ̂D, π̂D for class D.

© If µ̂C = µ̂D and π̂C = π̂D, then the LDA and QDA
classifiers are identical

© If Σ̂C = I (the identity matrix) and Σ̂D = 5I, then
the LDA and QDA classifiers are identical

 If Σ̂C = Σ̂D, π̂C = 1/6, and π̂D = 5/6, then the
LDA and QDA classifiers are identical

© If the LDA and QDA classifiers are identical, then
the posterior probability P(Y = C|X = x) is linear in x

Top left: false, the covariance matrices might differ, making the QDA decision function nonlinear.

Bottom left: false, the QDA decision function is nonlinear.

Top right: correct.

Bottom right: no, the posterior is a logistic function.

(f) [3 pts] Consider an n × d design matrix X with labels y ∈ Rn. What is true of fitting this data with dual ridge regression
with the polynomial kernel k(Xi, X j) = (XT

i X j + 1)p = Φ(Xi)>Φ(X j) and regularization parameter λ > 0?

© If the polynomial degree is high enough, the poly-
nomial will fit the data exactly

© The algorithm computes Φ(Xi) and Φ(X j) in O(dp)
time

 The algorithm solves an n × n linear system

© When n is very large, this dual algorithm is
more likely to overfit than the primal algorithm with
degree-p polynomial features

Top left: see definition of dual ridge regression

Lower left: both give the same solution, no matter n!

Top right: The dual method problem of ridge regression is indeed recommended only when d > n. But in this case we use a
Kernel, so in fact we have a number of features of d′ = dp!

Top right: no need! just their dot product, which can easily be obtained with (XT
i X j + 1)p.

(g) [3 pts] Consider the kernel perceptron algorithm on an n × d design matrix X. We choose a matrix M ∈ RD×d and define
the feature map Φ(x) = Mx ∈ RD and the kernel k(x, z) = Φ(x) · Φ(z). Which of the following are always true?
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 The kernel matrix is XM>MX>

© If the primal perceptron algorithm terminates, then
the kernel perceptron algorithm terminates

© The kernel matrix is MX>XM>

 If the kernel perceptron algorithm terminates, then
the primal perceptron algorithm terminates

Top left: k(x, y) = 〈Mx,My〉 = xT MT My is a valid kernel function since MT M is positive semidefinite for all matrices M.

Bottom left: Yes, because K = Φ(X)Φ(X)> and Φ(X) = XM>.

Top right: Counterexample: let one class have (−2, 1), (1, 1) and the other class have (−1,−1), (2,−1) and let M project the
points onto the x-axis. The raw data is linearly separable but the projected data is not.

Bottom right: If w linearly separates the transformed points Mxi, then MT w linearly separates the original points since
wT (Mxi) = (MT w)T xi.

(h) [3 pts] Which of the following are true of decision trees? Assume splits are binary and are done so as to maximize the
information gain.

© If there are at least two classes at a given node,
there exists a split such that information gain is
strictly positive

© As you go down any path from the root to a leaf,
the information gain at each level is non-increasing

 The deeper the decision tree is, the more likely it
is to overfit

 Random forests are less likely to overfit than de-
cision trees

Top left: false, recall example from section.

Bottom left: false, recall example from section.

Top right: correct.

Bottom right: correct.

(i) [3 pts] While solving a classification problem, you use a pure, binary decision tree constructed by the standard greedy
procedure we outlined in class. While your training accuracy is perfect, your validation accuracy is unexpectedly low.
Which of the following, in isolation, is likely to improve your validation accuracy in most real-world applications?

© Lift your data into a quadratic feature space

© Select a random subset of the features and use only
those in your tree

© Normalize each feature to have variance 1

 Prune the tree, using validation to decide how to
prune

Top left: False, lifting to a more complex feature space will not generally stop you from overfitting.

Bottom left: False, an ensemble of standard decision trees fit to the same data-set will not learn

Top right: The small change in split criterion will not generally stop you from overfitting.

Bottom right: Correct, lowering depth defends against overfitting.

(j) [3 pts] For the sigmoid activation function and the ReLU activation function, which of the following are true in general?

 Both activation functions are monotonically non-
decreasing

© Both functions have a monotonic first derivative

© Compared to the sigmoid, the ReLU is more com-
putationally expensive

 The sigmoid derivative s′(γ) is quadratic in s(γ)
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a True. Simply graph the activation functions
b False. Sigmoid has non-monotonic derivative
c False. ReLU is simpler as all positives have derivative 1 and all negatives have 0. While we have to calculate exponential for
Sigmoid
d True. as ReLU vanish all the negatives into zero, implicitly introducing sparsity in the network
e True. Unlike Sigmoid, the product of gradients of ReLU function doesn’t end up converging to 0 as the value is either 0 or 1

(k) [3 pts] Which of the following are true in general for backpropagation?

 It is a dynamic programming algorithm

 Some of the derivatives cannot be fully computed
until the backward pass

© The weights are initially set to zero

© Its running time grows exponentially in the num-
ber of layers

a False. As it is not a model, but a quick algorithm to compute derivatives in the network
b True. We have a forward pass and a backward pass
c False. Linear time complexity instead
d False. The weights set randomly
e True. In the backward pass

(l) [3 pts] Facets of neural networks that have (reasonable, though not perfect) analogs in human brains include

© backpropagation

 linear combinations of input values

© convolutional masks applied to many patches

 edge detectors

(m) [3 pts] Which of the following are true of the vanishing gradient problem for sigmoid units?

 Deeper neural networks tend to be more suscepti-
ble to vanishing gradients

© If a unit has the vanishing gradient problem for
one training point, it has the problem for every train-
ing point

 Using ReLU units instead of sigmoid units can
reduce this problem

© Networks with sigmoid units don’t have this prob-
lem if they’re trained with the cross-entropy loss func-
tion

Top left: false, as the number of layers goes up, the gradient is more likely to vanish during backpropagation. If one node yields
a gradient close to zero, the gain of the nodes in the previous layers will also be very low.

Bottom left: true, ReLU is generally better since its gradient does not go to zero as the input goes to zero.

Top right: false, if gradients are vanishing, the weights have already effectively stopped changing their values.

Bottom right: true, this is the incentive for ResNets.

(n) [3 pts] Suppose our input is two-dimensional sample points, with ten non-exclusive classes those points may belong to
(i.e., a point can belong to more than one class). To train a classifier, we build a fully-connected neural network (with
bias terms) that has a single hidden layer of twenty units and an output layer of ten units (one for each class). Which
statements apply?

© For the output units, softmax activations are more
appropriate than sigmoid activations

© This network will have 240 trainable parameters

 For the hidden units, ReLU activations are more
appropriate than linear activations

 This network will have 270 trainable parameters

Softmax will create a valid probability distribution across all the outputs, making it well suited to predicting the single class
a point is most likely to belong to but not to predicting whether or not the point is in each class. Sigmoid will give us a valid
in-class probability for each class independently, allowing us to perform multiclass predictions.
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There are 2∗20 + 20 = 60 parameters in the first layer and 20∗10 + 10 = 210 in the second, giving us a total of 270 parameters.

With a linear activation on the hidden layer, this network reduces to a perceptron and cannot model non-linear decision bound-
aries.

Randomly initializing the weight terms breaks the symmetry of the network; its okay (and in fact standard practice) to initialize
the bias terms to zero.

(o) [3 pts] Which of the following can lead to valid derivations of PCA?

 Fit the mean and covariance matrix of a Gaussian
distribution to the sample data with maximum likeli-
hood estimation

© Find the direction w that minimizes the sample
variance of the projected data

© Find the direction w that minimizes the sum of
projection distances

 Find the direction w that minimizes the sum of
squares of projection distances

This is best explained by the lecture notes - in particular, lecture note 20 from the Spring 2019 iteration of the course.

(p) [3 pts] Write the SVD of an n × d design matrix X (with n ≥ d) as X = UDVT . Which of the following are true?

 The components of D are all nonnegative

© If X is a real, symmetric matrix, the SVD is always
the same as the eigendecomposition

 The columns of V all have unit length and are
orthogonal to each other

 The columns of D are orthogonal to each other

Top left: false, the columns of V can be used for PCA.

Bottom left: false, let the spectral decomposition be QΛQ−1. Λ may have negative values.

Top right: correct.

Bottom right: False, a subset of the columns of V correspond to the null space of X.

(q) [3 pts] Which of the following is true about Lloyd’s algorithm for k-means clustering?

© It is a supervised learning algorithm

 It never returns to a particular assignment of
classes to sample points after changing to another one

 If run for long enough, it will always terminate

© No algorithm (Lloyd’s or any other) can always
find the optimal solution

k-means is an unsupervised learning algorithm. The number of clusters k is a hyperparameter.

(r) [3 pts] Which of the following are advantages of using k-medoid clustering instead of k-means?

 k-medoids is less sensitive to outliers

 Medoids make more sense than means for non-
Euclidean distance metrics

© Medoids are faster to compute than means

© The k-medoids algorithm with the Euclidean dis-
tance metric has no hyperparameters, unlike k-means

Both k means and k medoids have k as a hyperparameter. Medoids are much more expensive to compute than means (calculating
all pairwise distances, rather than just summing all points and averaging).
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(s) [3 pts] We wish to cluster 2-dimensional points into two clusters, so we run Lloyd’s algorithm for k-means clustering until
convergence. Which of the following clusters could it produce? (The points inside an oval belong to the same cluster).

 

 

©

 

(t) [3 pts] Which of the following are true of hierarchical clustering?

© The number k of clusters is a hyperparameter

 The greedy agglomerative clustering algorithm
repeatedly fuses the two clusters that minimize the
distance between clusters

© Complete linkage works only with the Euclidean
distance metric

 During agglomerative clustering, single linkage is
more sensitive to outliers than complete linkage

Top left: Part of the point of hierarchy is so you don’t have to guess k in advance

Bottom left: Correct

Top right: Complete linkage is compatible with any distance function

Bottom right: Single linkage is very sensitive to outliers

(u) [3 pts] Which of the following are true of spectral clustering?

© The Fiedler vector is the eigenvector associated
with the second largest eigenvalue of the Laplacian
matrix

 Nobody knows how to find the sparsest cut in
polynomial time

 The relaxed optimization problem for partitioning
a graph involves minimizing the Rayleigh quotient of
the Laplacian matrix and an indicator vector (subject
to a constraint)

© The Laplacian matrix of a graph is invertible

Top left: The Fiedler vector corresponds to the second smallest eigenvalue.

Bottom left: The relaxed optimization problem minimizes the rayleigh quotient with constraints.

Top right: It’s NP-hard.
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Bottom right: the laplacian is never invertible; 1 is always in the nullspace.

(v) [3 pts] For binary classification, which of the following statements are true of AdaBoost?

 It can be applied to neural networks

© It uses the majority vote of learners to predict the
class of a data point

 The metalearner provides not just a classification,
but also an estimate of the posterior probability

 The paper on AdaBoost won a Gödel Prize
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(w) [3 pts] For binary classification, which of the following statements are true of AdaBoost with decision trees?

 It usually has lower bias than a single decision
tree

 It is popular because it usually works well even
before any hyperparameter tuning

© To use the weight wi of a sample point Xi when
training a decision tree G, we scale the loss function
L(G(Xi), yi) by wi

© It can train multiple decision trees in parallel

(x) [3 pts] Which of the following are reasons one might choose latent factor analysis (LFA) over k-means clustering to group
together n data points in Rd?

 LFA is not sensitive to how you initialize it,
whereas Lloyd’s algorithm is

 LFA allows us to consider points as belonging to
multiple “overlapping” clusters, whereas in k-means,
each point belongs to only one cluster

© In market research, LFA can distinguish different
consumer types, whereas k-means cannot

 k-means requires you to guess k in advance,
whereas LFA makes it easier to infer the right num-
ber of clusters after the computation

The first choice is true due to the curse of dimensionality. The second one is false: LFA is more expensive than k-means. For I
iterations and k clusters, k-means runs in O(nkID) time, whereas SVD takes O(min(dn2, d2n)) time. The third one is true. We
can measure how much a user vector belongs to a particular cluster by taking its inner product with the corresponding singular
vector. The fourth one is false because of the above application.

(y) [3 pts] Which of the following are true for k-nearest neighbor classification?

 It is more likely to overfit with k = 1 (1-NN) than
with k = 1,000 (1,000-NN)

 In very high dimensions, exhaustively checking
every training point is often faster than any widely
used competing exact k-NN query algorithm

 If you have enough training points drawn from the
same distribution as the test points, k-NN can achieve
accuracy almost as good as the Bayes decision rule

© The optimal running time to classify a point with
k-NN grows linearly with k

Top left: correct; smaller k’s overfit more.

Bottom left: empirical fact.

Top right: true; Fix & Hodges, 1951.

Bottom right: false, it’s poly.

(z) [3 pts] Suppose we use the k-d tree construction and query algorithms described in class to find the approximate nearest
neighbor of a query point among n sample points. Select the true statements.

 It is possible to guarantee that the tree has O(log n)
depth by our choice of splitting rule at each treenode

© Sometimes we permit the k-d tree to be unbalanced
so we can choose splits with better information gain

© Querying the k-d tree is faster than querying a
Voronoi diagram for sample points in R2

 Sometimes the query algorithm declines to search
inside a box that’s closer to the query point than the
nearest neighbor it’s found so far
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Q2. [17 pts] Getting Down(hill) with the Funk Function
The Netflix Prize was an open competition for the best collaborative filtering algorithm to predict user ratings for films. Com-
petitors were given an n×d ratings matrix R; entry R jk is user j’s rating of movie k. Because users only watch a small fraction of
the movies, most entries in R are unobserved, hence filled with a default value of zero. Latent factor analysis attempts to predict
missing ratings by replacing R with a low-rank approximation, which is a truncated singular value decomposition (SVD).

(a) [4 pts] Given the SVD R = UDV>, write a formula for the rank-r truncated SVD R′ for comparison; make sure you
explain your notation. Then write the standard restrictions (imposed by the definition of SVD) on U, D, and V .

The rank-r truncated SVD of R is R′ =
∑r

i=1 δiuiv>i , where ui is column i of U and vi is column i of V . The standard
restrictions are U>U = I, V>V = I, and D is a diagonal matrix with nonnegative components.

LFA leaves plenty of room for improvement. Simon Funk (a pseudonym, but a real person), who at one point was ranked third
in the competition, developed a method called “Funk SVD.” Recall that the rank-r truncated SVD R′ minimizes the Frobenius
norm ‖R − R′‖F , subject to the constraint that R′ has rank r. Mr. Funk modified this approach to learn two matrices A ∈ Rn×r

and B ∈ Rr×d such that AB ≈ R. The rank of AB cannot exceed r. Let a j be the jth row of A, let bk be the kth column of B, and
observe that (AB) jk = a j · bk. Mr. Funk solves the problem of finding matrices A and B that minimize the objective function

L(A, B) =
∑

j,k : R jk,0

(R jk − a j · bk)2.

The key difference between this objective function and the one optimized by the truncated SVD is that the summation is over
only nonzero components of R. Instead of computing an SVD, Mr. Funk minimizes this objective with gradient descent.

(b) [2 pts] Explain why the optimal solution is not unique; that is, there is more than one pair of optimal matrices (A, B).

If AB = R, then (2A)( 1
2 B) = R too.

(c) [5 pts] Although Mr. Funk uses stochastic gradient descent, we will derive a batch gradient descent algorithm. It turns
out to be easiest to write the update rule for A one row at a time. State the gradient descent rule for updating row a j

during the minimization of Mr. Funk’s objective function L(A, B). Use some step size ε > 0. (Be careful that you sum
only the correct terms!) (Note: there is a symmetric rule for updating bk; the algorithm must update both A and B.)

∇a j L(A, B) = −2
∑

k:R jk,0

(R jk − a j · bk)bk.

Hence the gradient descent update is
a j ← a j + 2ε

∑
k:R jk,0

(R jk − a j · bk)bk.

(You may omit the factor of 2.)

(d) [3 pts] What will happen if you initialize Funk SVD by setting A← 0 and B← 0? Suggest a better initialization.

If the matrices are initialized to zero, the gradient descent rule cannot make them nonzero.

There are many better initializations. You could use A← UD and B← V>, or better yet, A← UD1/2 and B← D1/2V>.
A random initialization will generally work okay.

Note that a choice in which all the components of a j are the same and all the components of bk are the same will not
work.

(e) [3 pts] Consider the special case where r = 1 and the matrix R has no zero entries. In this case, what is the relationship
between an optimal solution A, B and the rank-one truncated singular value decomposition?

AB = δ1u1v>1 .

(Because the rank-1 truncated SVD is δ1u1v>1 , and it minimizes the Frobenius norm reconstruction error. This is equiva-
lent to Mr. Funk’s objective when R has no zeros.)

10



Q3. [10 pts] Decision Boundaries
In the question, you will draw the decision boundaries that classifiers would learn.

(a) [6 pts] Given the sample points below, draw and label two lines: the decision boundary learned by a hard-margin SVM
and the decision boundary learned by a soft-margin SVM. We are not specifying the hyperparameter C, but don’t make
C too extreme. (We are looking for a qualitative difference between hard- and soft-margin SVMs.) Label the two lines
clearly.
Also draw and label four dashed lines to show the margins of both SVMS.

Solution:

(b) [4 pts] Given the sample points below, draw and label two curves: the decision boundary learned by LDA and the
decision boundary learned by QDA. Label the two curves clearly.
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Solution:
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Q4. [16 pts] Kernel Principal Components Analysis
Let X be an n × d design matrix. Suppose that X has been centered, so the sample points in X have mean zero. In this problem
we consider kernel PCA and show that it equates to solving a generalized Rayleigh quotient problem.

(a) [1 pt] Fill in the blank: every principal component direction for X is an eigenvector of . X>X

(b) [1 pt] Fill in the blank: an optimization problem can be kernelized only if its solution w is always a linear combination
of the sample points. In other words, we can write it in the form w = .
X>a (for some vector a).

(c) [4 pts] Show that every principal component direction w with a nonzero eigenvalue is a linear combination of the sample
points (even when n < d).

As w is an eigenvector of X>X, there is a λ ∈ R such that X>Xw = λw. Setting a = 1
λ

Xw, we have X>a = w.

(d) [4 pts] Let Φ(z) be a feature map that takes a point z ∈ Rd and maps it to a point Φ(z) ∈ RD, where D might be extremely
large or even infinite. But suppose that we can compute the kernel function k(x, z) = Φ(x) ·Φ(z) much more quickly than
we can compute Φ(x) directly. Let Φ(X) be the n×D matrix in which each sample point is replaced by a featurized point.
By our usual convention, row i of X is X>i , and row i of Φ(X) is Φ(Xi)>.

Remind us: what is the kernel matrix K? Answer this two ways: explain the relationship between K and the kernel
function k(·, ·); then write the relationship between K and Φ(X). Lastly, show that these two definitions are equivalent.

K is the n × n matrix with components Ki j = k(Xi, X j). Also, K = Φ(X)Φ(X)>.

These two characterizations are equivalent because Ki j = k(Xi, X j) = Φ(Xi) · Φ(X j) is the inner product of row i of Φ(X)
and column j of Φ(X)>, which implies that K = Φ(X)Φ(X)>.

(e) [2 pts] Fill in the space: the first principle component direction of the featurized design matrix Φ(X) is any nonzero vector
w ∈ RD that maximizes the Rayleigh quotient, which is .

w>Φ(X)>Φ(X)w
w>w

.

(f) [4 pts] Show that the problem of maximizing this Rayleigh quotient is equivalent to maximizing

a>Ba
a>Ca

for some positive semidefinite matrices B,C ∈ Rn×n, where a ∈ Rn is a vector of dual weights. This expression is called
a generalized Rayleigh quotient. What are the matrices B and C? For full points, express them in a form that does not
require any direct computation of the feature vectors Φ, which could be extremely long.
w>Φ(X)>Φ(X)w

w>w =
a>Φ(X)Φ(X)>Φ(X)Φ(X)>a

a>Φ(X)Φ(X)>a = a>K2a
a>Ka . Hence B = K2 and C = K.
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Q5. [12 pts] Spectral Graph Clustering
Let’s apply spectral graph clustering to this graph.

1

1 2

3 4

1 1

1

1

(a) [4 pts] Write the Laplacian matrix L for this graph. All the edges have weight 1.
2 −1 −1 0
−1 3 −1 −1
−1 −1 3 −1
0 −1 −1 2


(b) [2 pts] Consider the minimum bisection problem, where we find an indicator vector y that minimizes y>Ly, subject to

the balance constraint 1>y = 0 and the strict binary constraint ∀i, yi = 1 or yi = −1. Write an indicator vector y that
represents a minimum bisection of this graph.

Any one of


1
−1
1
−1

 or


−1
1
−1
1

 or


1
1
−1
−1

 or


−1
−1
1
1

 will do.

(c) [4 pts] Suppose we relax (discard) the binary constraint and replace it with the weaker constraint y>y = constant, per-
mitting y to have real-valued components. (We keep the balance constraint.) What indicator vector is a solution to the
relaxed optimization problem? What is its eigenvalue?

Hint: Look at the symmetries of the graph. Given that the continuous values of the yi’s permit some of the vertices to be
at or near zero, what symmetry do you think would minimize the continuous-valued cut? Guess and then check whether
it’s an eigenvector.

1
0
0
−1

 or


−1
0
0
1

 or any nonzero multiple of these. The eigenvalue is 2.

(d) [2 pts] If we apply the sweep cut to find a cut with good sparsity, what two clusters do we get? Is it a bisection?

The sweep cut either puts vertex 1 in a subgraph by itself, or vertex 4 in a subgraph by itself. It does not choose a
bisection.
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Q6. [17 pts] Learning Mixtures of Gaussians with k-Means
Let X1, . . . , Xn ∈ R

d be independent, identically distributed points sampled from a mixture of two normal (Gaussian) distribu-
tions. They are drawn independently from the probability distribution function (PDF)

p(x) = θ N1(x) + (1 − θ) N2(x), where N1(x) =
1

(
√

2π)d
e−‖x−µ1‖

2/2 and N2(x) =
1

(
√

2π)d
e−‖x−µ2‖

2/2

are the PDFs for the isotropic multivariate normal distributions N(µ1, 1) and N(µ2, 1), respectively. The parameter θ ∈ (0, 1) is
called the mixture proportion. In essence, we flip a biased coin to decide whether to draw a point from the first Gaussian (with
probability θ) or the second (with probability 1 − θ).

Each data point is generated as follows. First draw a random Zi, which has value 1 with probability θ, and has value 2 with
probability 1 − θ. Then, draw Xi ∼ N(µZi , 1). Our learning algorithm gets Xi as an input, but does not know Zi.

Our goal is to find the maximum likelihood estimates of the three unknown distribution parameters θ ∈ (0, 1), µ1 ∈ R
d, and

µ2 ∈ R
d from the sample points X1, . . . , Xn. Unlike MLE for one Gaussian, it is not possible to give explicit analytic formulas

for these estimates. Instead, we develop a variant of k-means clustering which (often) converges to the correct maximum
likelihood estimates of θ, µ1, and µ2. This variant doesn’t assign each point entirely to one cluster; rather, each point is assigned
an estimated posterior probability of coming from normal distribution 1.

(a) [4 pts] Let τi = P(Zi = 1|Xi). That is, τi is the posterior probability that point Xi has Zi = 1. Use Bayes’ Theorem to
express τi in terms of Xi, θ, µ1, µ2, and the Gaussian PDFs N1(x) and N2(x). To help you with part (c), also write down a
similar formula for 1 − τi, which is the posterior probability that Zi = 2.

Bayes’ Theorem implies that

τi =
θN1(Xi)

θN1(Xi) + (1 − θ)N2(Xi)
, 1 − τi =

(1 − θ)N2(Xi)
θN1(Xi) + (1 − θ)N2(Xi)

.

(b) [3 pts] Write down the log-likelihood function, `(θ, µ1, µ2; X1, . . . , Xn) = ln p(X1, . . . , Xn), as a summation. Note: it
doesn’t simplify much.

Because the samples are iid, p(X1, . . . , Xn) =
∏n

i=1 p(Xi), so

`(θ, µ1, µ2; X1, . . . , Xn) =

n∑
i=1

ln(θN1(Xi) + (1 − θ)N2(Xi)).

(c) [3 pts] Express ∂`
∂θ

in terms of θ and τi, i ∈ {1, . . . , n} and simplify as much as possible. There should be no normal PDFs
explicitly in your solution, though the τi’s may implicitly use them. Hint: Recall that (ln f (x))′ =

f ′(x)
f (x) .

∂`

∂θ
=

n∑
i=1

(
τi

θ
−

1 − τi

1 − θ

)
=

1
θ − θ2

n∑
i=1

(τi − θ) =
(
∑
τi) − θn
θ − θ2 .

(Any of these expressions is simple enough to receive full marks.)
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(d) [4 pts] Express ∇µ1` in terms of µ1 and τi, Xi, i ∈ {1, . . . , n}. Do the same for ∇µ2` (but in terms of µ2 rather than µ1).
Again, there should be no normal PDFs explicitly in your solution, though the τi’s may implicitly use them.
Hint: It will help (and get you part marks) to first write ∇µ1 N1(x) as a function of N1(x), x, and µ1.

∇µ1` =

n∑
i=1

θ∇µ1 N1(Xi)
θN1(Xi) + (1 − θ)N2(Xi)

=

n∑
i=1

θN1(Xi)
θN1(Xi) + (1 − θ)N2(Xi)

(Xi − µ1)

=

n∑
i=1

τi(Xi − µ1).

Similarly,

∇µ2` =

n∑
i=1

(1 − τi)(Xi − µ2).

(e) [3 pts] We conclude: if we know µ1, µ2, and θ, we can compute the posteriors τi. On the other hand, if we know the τi’s,
we can estimate µ1, µ2, and θ by using the derivatives in parts (c) and (d) to find the maximum likelihood estimates. This
leads to the following k-means-like algorithm.

• Initialize τ1, τ2, . . . , τn to arbitrary values in the range [0, 1].

• Repeat the following two steps.

1. Update the Gaussian cluster parameters: for fixed values of τ1, τ2, . . . , τn, update µ1, µ2, and θ.
2. Update the posterior probabilities: for fixed values of µ1, µ2 and θ, update τ1, τ2, . . . , τn.

In part (a), you wrote the update rule for step 2. Using your results from parts (c) and (d), write down the explicit update
formulas for step 1.

µ1 ←

∑n
i=1 τiXi∑n

i=1 τi
, µ2 ←

∑n
i=1(1 − τi)Xi∑n

i=1(1 − τi)
, θ ←

1
n

n∑
i=1

τi.
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Q1. [64 pts] Multiple Answer
Fill in the bubbles for ALL correct choices: there may be more than one correct choice, but there is always at least one correct
choice. NO partial credit: the set of all correct answers must be checked.

(1) [4 pts] Which of the following are true for the k-nearest neighbor (k-NN) algorithm?

 A: k-NN can be used for both classification and
regression.

 B: As k increases, the bias usually increases.

© C: The decision boundary looks smoother with
smaller values of k.

© D: As k increases, the variance usually increases.

(2) [4 pts] Let X be a matrix with singular value decomposition X = UΣV>. Which of the following are true for all X?

 A: rank(X) = rank(Σ).

© B: If all the singular values are unique, then the
SVD is unique.

 C: The first column of V is an eigenvector of X>X.

 D: The singular values and the eigenvalues of
X>X are the same.

A is correct because the number of non-zero singular values is equal to the rank. B is incorrect because you could change both
U → −U,V → −V . C is correct because the SVD and eigendecomposition of X>X is VΣ2V>. D is correct as X>X is positive
semidefinite, so the eigenvalues can’t be negative.

(3) [4 pts] Lasso (with a fictitious dimension), random forests, and principal component analysis (PCA) all . . .

 A: can be used for dimensionality reduction or feature subset selection

© B: compute linear transformations of the input features

© C: are supervised learning techniques

 D: are translation invariant: changing the origin of the coordinate system (i.e., translating all the training and
test data together) does not change the predictions or the principal component directions

Option B is incorrect because random forests don’t compute linear transformations. Option C is incorrect because PCA is
unsupervised.

(4) [4 pts] Suppose your training set for two-class classification in one dimension (d = 1; xi ∈ R) contains three sample
points: point x1 = 3 with label y1 = 1, point x2 = 1 with label y2 = 1, and point x3 = −1 with label y3 = −1. What are
the values of w and b given by a hard-margin SVM?

© A: w = 1, b = 1

© B: w = 0, b = 1

 C: w = 1, b = 0

© D: w = ∞, b = 0

(5) [4 pts] Use the same training set as part (d). What is the value of w and b given by logistic regression (with no regular-
ization)?

© A: w = 1, b = 1

© B: w = 0, b = 1

© C: w = 1, b = 0

 D: w = ∞, b = 0

(6) [4 pts] Below are some choices you might make while training a neural network. Select all of the options that will
generally make it more difficult for your network to achieve high accuracy on the test data.
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 A: Initializing the weights to all zeros

 B: Normalizing the training data but leaving the
test data unchanged

© C: Using momentum

© D: Reshuffling the training data at the beginning
of each epoch

A) Initializing weights with zeros makes it impossible to learn. B) Mean and standard deviation should be computed on the
training set and then used to standardize the validation and test sets, so that the distributions are matched for each set. C) This
describes momentum and will generally help training. D) This is best practice.
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(7) [4 pts] To the left of each graph below is a number. Select the choices for which the number is the multiplicity of the
eigenvalue zero in the Laplacian matrix of the graph.

© A: 1

 B: 1

© C: 2

© D: 4

The multiplicity is equal to the number of connected components in the graph.

(8) [4 pts] Given the spectral graph clustering optimization problem
Find y that minimizes y>Ly
subject to y>y = n

and 1>y = 0,
which of the following optimization problems produce a vector y that leads to the same sweep cut as the optimization
problem above? M is a diagonal mass matrix with different masses on the diagonal.

 A:
Minimize y>Ly
subject to y>y = 1

and 1>y = 0

© B:
Minimize y>Ly
subject to ∀i, yi = 1 or yi = −1

and 1>y = 0

 C: Minimize y>Ly/(y>y)
subject to 1>y = 0

© D:
Minimize y>Ly
subject to y>My = 1

and 1>My = 0

(9) [4 pts] Which of the following methods will cluster the data in panel (a) of the figure below into the two clusters (red
circle and blue horizontal line) shown in panel (b)? Every dot in the circle and the line is a data point. In all the options
that involve hierarchical clustering, the algorithm is run until we obtain two clusters.

(a) Unclustered

(b) Desired clustering

© A: Hierarchical agglomerative clustering with
Euclidean distance and complete linkage

 B: Hierarchical agglomerative clustering with
Euclidean distance and single linkage
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© C: Hierarchical agglomerative clustering with
Euclidean distance and centroid linkage

© D: k-means clustering with k = 2

Single linkage uses the minimum distance between two clusters as a metric for merging clusters. Since the two clusters are
densely packed with points and the minimum distance between the two clusters is greater than the within-cluster distances
between points, single linkage doesn’t link the circle to the line until the very end.

The other three methods will all join some of the points at the left end of the line with the circle, before they are joined with the
right end of the line.
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(10) [4 pts] Which of the following statement(s) about kernels are true?

 A: The dimension of the lifted feature vectors Φ(·), whose inner products the kernel function computes, can be
infinite.

© B: For any desired lifting Φ(x), we can design a kernel function k(x, z) that will evaluate Φ(x)>Φ(z) more quickly
than explicitly computing Φ(x) and Φ(z).

 C: The kernel trick, when it is applicable, speeds up a learning algorithm if the number of sample points is
substantially less than the dimension of the (lifted) feature space.

 D: If the raw feature vectors x, y are of dimension 2, then k(x, y) = x2
1y2

1 + x2
2y2

2 is a valid kernel.

A is correct; consider the Gaussian kernel from lecture. B is wrong; most liftings don’t lead to super-fast kernels. Just some
special ones do. C is correct, straight from lecture. Though in this case, the dual algorithm is faster than the primal whether
you use a fancy kernel or not. D is correct because k(x, y) is inner product of Φ(x) = [x2

1 x2
2]> and Φ(y) = [y2

1 y2
2]>.

(11) [4 pts] We want to use a decision tree to classify the training points depicted. Which of the following decision tree
classifiers is capable of giving 100% accuracy on the training data with four splits or fewer?

© A: A standard decision tree with axis-aligned splits

© B: Using PCA to reduce the training data to one
dimension, then applying a standard decision tree

 C: A decision tree with multivariate linear splits

 D: Appending a new feature |x1| + |x2| to each
sample point x, then applying a standard decision tree

A standard decision tree will need (substantially) more than four splits. PCA to 1D will make it even harder. However,
four non-axis-aligned multivariate linear splits suffice to cut the diamond out of the center. Finally, adding the L1 norm
feature lets us perfectly classify the data with a single split that cuts off the top of the pyramid.

(12) [4 pts] Which of the following are true about principal components analysis (PCA)?

© A: The principal components are eigenvectors of
the centered data matrix.

 B: The principal components are right singular
vectors of the centered data matrix.

 C: The principal components are eigenvectors of
the sample covariance matrix.

 D: The principal components are right singular
vectors of the sample covariance matrix.

The first three follow directly from definitions. The last is because the covariance matrix is symmetric, so the singular vectors
are the eigenvectors.
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(13) [4 pts] Suppose we are doing ordinary least-squares linear regression with a fictitious dimension. Which of the
following changes can never make the cost function’s value on the training data smaller?

 A: Discard the fictitious dimension (i.e., don’t append a 1 to every sample point).

© B: Append quadratic features to each sample point.

 C: Project the sample points onto a lower-dimensional subspace with PCA (without changing the labels) and
perform regression on the projected points.

 D: Center the design matrix (so each feature has mean zero).

A: Correct. Discarding the fictitious dimension forces the linear regression function to be zero at the origin, which may increase
the cost function but can never decrease it.

B: Incorrect. Added quadratic features often help to fit the data better.

C: Correct. Regular OLS is at least as expressive. Projecting the points may incrase the cost function but can never decrease
it. Centering features doesn’t matter so WLOG assume X has centered features. If the full SVD is X = UΣV>, then projecting
onto a k-dimensional subspace gives Xk = UΣkV>. If wk is a solution for the PCA-projected OLS, we can take w = Vz where z
is the first k elements of V>wk with the rest zero, and get Xkwk = Xw.

D: Correct. Since we’re using a fictitious dimension, translating the points does not affect the cost of the optimal regression
function (which translates with the points).
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(14) [4 pts] Which of the following are true about principal components analysis (PCA)? Assume that no two eigenvectors
of the sample covariance matrix have the same eigenvalue.

 A: Appending a 1 to the end of every sample point doesn’t change the results of performing PCA (except that
the useful principal component vectors have an extra 0 at the end, and there’s one extra useless component with
eigenvalue zero).

 B: If you use PCA to project d-dimensional points down to j principal coordinates, and then you run PCA again
to project those j-dimensional coordinates down to k principal coordinates, with d > j > k, you always get the same
result as if you had just used PCA to project the d-dimensional points directly down to k principle coordinates.

© C: If you perform an arbitrary rigid rotation of the sample points as a group in feature space before performing
PCA, the principal component directions do not change.

 D: If you perform an arbitrary rigid rotation of the sample points as a group in feature space before performing
PCA, the largest eigenvalue of the sample covariance matrix does not change.

Appending an extra dimension with the same values introduces no variance in the extra dimension, so PCA will ignore that
dimension. PCA discards the eigenvector directions associated with the largest eigenvalues; as the eigenvectors are mutually
orthogonal, this does not affect the variance in the surviving dimensions, so your results depend solely on how many directions
you discard. Rotating the sample points rotates the principal components, but it doesn’t change the variance along each of those
(rotated) component directions.

(15) [4 pts] Consider running a single iteration of AdaBoost on three sample points, starting with uniform weights on the
sample points. All the ground truth labels and predictions are either +1 or −1. In the table below, some values have been
omitted. Which of the following statements can we say with certainty?

True Label Classifier Prediction Initial Weight Updated Weight

X1 −1 −1 1/3 ?
X2 ? +1 1/3

√
2/3

X3 ? ? 1/3
√

2/6

 A: X1’s updated weight is
√

2/6

© B: X3’s classifier prediction is −1

 C: X2 is misclassified

© D: X3 is misclassified

In the AdaBoost algorithm, all correctly classified points have their weights changed by the same multiplicative factor.
Since we observe two different updated weights, we know one of x2 or x3 is correctly classified, and the other is mis-
classified. Since x1 is correctly classified, the error rate is err = 1/3. As the error rate is less than 1/2, the weights of
correctly classified points will decrease and the weights of misclassified points will increase. Hence, X2 is misclassified
and X3 is correctly classified. As X1 is correctly classified, it has the same updated weight as X3. But we can’t tell what
X3’s classifier prediction is; only that it is correctly classified.

As an aside, we can confirm the multipliers used for reweighting of misclassified and correctly classified points (in that
order): √

err
1 − err

=

√
2/3
1/3

=
√

2

√
1 − err

err
=

√
1/3
2/3

=

√
2

2

(16) [4 pts] Consider running the hierarchical agglomerative clustering algorithm on the following set of four points in R2,
breaking ties arbitrarily. If we stop when only two clusters remain, which of the following linkage methods ensures the
resulting clusters are balanced (each have two sample points)? Select all that apply.
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y

x

(0, 1)

(0,−1)

(1, 0)(−1, 0)

 A: Complete linkage

© B: Single linkage

 C: Centroid linkage

 D: Average linkage

Under each of these linkage methods, we know that two adjacent points along a side of the rhombus will first be fused
together. Without loss of generality, assume these are the points (0, 1) and (1, 0). Treating these as a cluster, the average,
maximum and centroid distances to each of the two remaining points are all larger that the distance between the two
points themselves. Therefore, complete linkage, single linkage and average linkage all result in balanced clusters. On
there other hand, single linkage does not, since, for example, (1, 0) and (0,−1) have the same distance as (−1, 0) and
(0,−1).
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Q2. [14 pts] Principal Components Analysis
Consider the following design matrix, representing four sample points Xi ∈ R

2.

X =


4 1
2 3
5 4
1 0

 .
We want to represent the data in only one dimension, so we turn to principal components analysis (PCA).

(1) [5 pts] Compute the unit-length principal component directions of X, and state which one the PCA algorithm would
choose if you request just one principal component. Please provide an exact answer, without approximation. (You will
need to use the square root symbol.) Show your work!

We center X, yielding

Ẋ =


1 −1
−1 1
2 2
−2 −2

 .

Then Ẋ>Ẋ =

[
10 6
6 10

]
. (Divide by 4 if you want the sample covariance matrix. But we don’t care about the magnitude.)

Its eigenvectors are [1/
√

2 1/
√

2]> with eigenvalue 16 and [1/
√

2 − 1/
√

2]> with eigenvalue 4. The former eigenvector is
chosen.

(Negated versions of these vectors also get full points.)

(2) [5 pts] The plot below depicts the sample points from X. We want a one-dimensional representation of the data, so
draw the principal component direction (as a line) and the projections of all four sample points onto the principal
direction.

Label each projected point with its principal coordinate value (where the origin’s principal coordinate is zero). Give
the principal coordinate values exactly.
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The principal coordinates are 1
√

2
, 5
√

2
, 5
√

2
, and 9

√
2
. (Alternatively, all of these could be negative, but they all have to have the

same sign.)

(3) [4 pts] The plot below depicts the sample points from X rotated 30 degrees counterclockwise about the origin.

As in part (b), identify the principal component direction that the PCA algorithm would choose and draw it (as a
line) on the plot. Also draw the projections of the rotated points onto the principal direction.

Label each projected point with the exact value of its principal coordinate.
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The line passes through the origin and is parallel to the two sample points that are farthest apart, so it’s easy to draw. Rotation
has not changed the principal coordinates: 1

√
2
, 5
√

2
, 5
√

2
, and 9

√
2
. (Again, these could all be negative.)
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Q3. [14 pts] A Decision Tree
In this question we investigate whether students will pass or fail CS 189 based on whether or not they studied, cheated, and
slept well before the exam. You are given the following data for five students. There are three features, “Studied,” “Slept,” and
“Cheated.” The column “Result” shows the label we want to predict.

Studied Slept Cheated Result
Student 1 Yes No No Passed
Student 2 Yes No Yes Failed
Student 3 No Yes No Failed
Student 4 Yes Yes Yes Failed
Student 5 Yes Yes No Passed

(1) [4 pts] What is the entropy H(Result) at the root node? (There is no need to compute the exact number; you may write
it as an arithmetic expression.)

H(Result) = −

(
2
5

log2
2
5

+
3
5

log2
3
5

)
.

(2) [5 pts] Draw the decision tree where every split maximizes the information gain. (An actual drawing, please; a written
description does not suffice.) Do not perform a split on a pure leaf or if the split will produce an empty child; otherwise,
split. Explain (with numbers) why you chose the splits you chose.

A tree that first splits on “Cheated” and then “Studied.”

(3) [2 pts] Did the tree you built implicitly perform feature subset selection? Explain.

Yes, because it does not use the feature “Slept.”

(4) [3 pts] Suppose you have a sample of n students for some large n, with the same three features. Assuming that we use a
reasonably efficient algorithm to build the tree (as discussed in class), what is the worst-case running time to build the
decision tree? (Write your answer in the simplest asymptotic form possible.) Why?

We have 3 binary features, so the tree’s depth cannot exceed 3 and each sample point participates in at most four treenodes.
Hence, it cannot take more than Θ(n) time to build the tree.
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Q4. [20 pts] Spectral Graph Clustering

Figure 1: An undirected, weighted graph in which all vertices have mass 1. The numbers inside the vertices are their indices
(not masses).

In this problem, we approximate the sparsest cut of the graph above with the spectral graph clustering algorithm. Recall the
spectral graph clustering optimization objective is to

find y that minimizes y>Ly
subject to y>y = 6

and 1>y = 0.

(1) [4 pts] Write out the Laplacian matrix L.

100 −100 0 0 0 0
−100 150 −50 0 0 0

0 −50 150 −100 0 0
0 0 −100 110 −10 0
0 0 0 −10 110 −100
0 0 0 0 −100 100


(2) [3 pts] What is the rank of L? Explain your answer.

5, because the Laplacian matrix of a connected graph has one and only one eigenvector with eigenvalue zero.

(3) [4 pts] L has the following six unit eigenvectors, listed in random order. Write down the Fiedler vector. Then explain
how you can tell which one is the Fiedler vector without doing a full eigendecomposition computation. (There are
several ways to see this; describe one.)

© [0.36,−0.58, 0.61,−0.4, 0.04,−0.03]

© [0.3,−0.33,−0.23, 0.3,−0.6, 0.55]

© [−0.41, 0.41, 0.41,−0.41,−0.41, 0.41]

© [−0.56,−0.32, 0.43, 0.62,−0.06,−0.1]

 [0.36, 0.34, 0.25, 0.19,−0.55,−0.6]

© [0.41, 0.41, 0.41, 0.41, 0.41, 0.41]

The Fiedler vector is v2 = [0.36, 0.34, 0.25, 0.19,−0.55,−0.6]. Since we know these are all eigenvectors of the Laplacian
matrix L, one way to identify it is to explicitly multiply the first row of L by an eigenvector, and divide by the first component
of the eigenvector to reveal its eigenvalue. (The Fiedler vector has eigenvalue λ2 = 6.5; all the others except v1 have larger
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eigenvalues.) An easier way is to notice that only the Fiedler vector is monotonic in one direction (decreasing in this example).

(4) [5 pts] How does the sweep cut decide how to cut this graph into two clusters? (Explain in clear English sentences.) For
every cut considered by the algorithm, write down the “score” it is assigned by the sweep cut algorithm. (You may use
fractions; decimal numbers aren’t required.) Identify the chosen cut by writing down two sets of vertex indices.

The sweep cut sorts the values in the Fiedler vector, then decides which pair of consecutive vertices to cut between by explicitly
computing the sparsity of each of the five possible cuts. The cut with the lowest sparsity wins.

From left to right in the Fiedler vector, the sparsity of each cut is 20, 50
8 = 6.25, 100

9 � 11.11, 10
8 = 1.25, and 20.

The clusters are {5, 6} and {4, 3, 1, 2}.

(Cut between the values 0.19 and −0.55.)

(5) [4 pts] Suppose we have computed the four eigenvectors v1, v2, v3, v4 corresponding to the four largest eigenvalues.
(For simplicity, assume no two eigenvectors have the same eigenvalue.) We want to write a constrained optimization
problem that identifies the eigenvector corresponding to the fifth-largest eigenvalue. Explain how to modify the
optimization problem at the beginning of this question so that the vector y it finds is the desired eigenvector. (You may
change the objective function and/or add constraints, but they must be mathematical, and you cannot write things like
“subject to y being the eigenvector corresponding to the fifth-largest eigenvalue.”)

Add the following constraints: v>2 y = 0, v>3 y = 0, v>4 y = 0.
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Q5. [12 pts] Hierarchical Spectral Graph Multi-Clustering
In this problem, we shall consider the same graph as in the previous question, but we use multiple eigenvectors to perform
3-cluster clustering with the algorithm of Ng, Jordan, and Weiss (as opposed to the 2-cluster clustering we performed in the last
question).

(1) [4 pts] Based on the six eigenvectors of L given in the previous question, write down the spectral vector (as defined in
the lecture notes) for each vertex 1, . . . , 6 in that order.

The matrix of spectral vectors is



0.41 0.36 −0.56
0.41 0.34 −0.32
0.41 0.25 0.43
0.41 0.19 0.62
0.41 −0.55 −0.06
0.41 −0.6 −0.1


.

(2) [8 pts] We shall now cluster the six raw, unnormalized spectral vectors obtained above using hierarchical agglomerative
clustering with the Euclidean distance metric and single linkage. In contrast to what was discussed in class, we are not
normalizing the six spectral vectors (because we don’t want you to work that hard). Draw the complete single linkage
dendrogram on paper. The six integer points on the x-axis, 1, . . . , 6, should represent the vertices of the graph in the
order of their indices. The y-axis should indicate the linkage distances, as is standard for dendrograms. The numerical
distance at which each fusion happens should be clearly marked on your figure.

Points 5 and 6 merge first; the Euclidean distance between them is 0.06. Points 3 and 4 merge next; the Euclidean distance
between them is 0.2. Points 1 and 2 merge next; the Euclidean distance between them is 0.24. The single linkage distance
between {1, 2} and {3, 4} is 0.76. The single linkage distance between {1, 2} and {5, 6} is 0.93. That between {3, 4} and {5, 6} is
0.94. Therefore, the fourth merger is between {1, 2} and {3, 4}. The clusters after the fourth merger are {1, 2, 3, 4} and {5, 6},
matching what we obtained in the previous question. {1, 2, 3, 4} and {5, 6} merge at 0.93. The green dotted line indicates the
2-cluster clustering. The red dotted line indicates the 3-cluster clustering. (Note tha students aren’t asked to specify those lines.)

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

1.2
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Q6. [10 pts] A Miscellany
(1) [4 pts] Consider a single unit in a neural network that receives two binary inputs x1, x2 ∈ {0, 1}2 and computes a linear

combination followed by a threshold activation function, namely,

σ(z) =

1, z ≥ 0,
0 otherwise.

The unit is illustrated below. We have chosen a bias term of b = 5. Provide values for the two weights w1 and w2 that
allow you to compute the NAND function (which is 0 if and only if both inputs are 1).

w1 = −3, w2 = −3 will work.

(2) [6 pts] We are drawing sample points from a distribution with the probability density function (PDF) f (x) = 1
2 e−|x−µ|, but

we do not know the mean µ ∈ R. We decide to estimate µ with maximum likelihood estimation (MLE). Unfortunately,
we have only two sample points X1, X2 ∈ R.

Derive the likelihood and the log-likelihood for this problem. Then show that every value of µ between X1 and X2 is
a maximum likelihood estimate.

The likelihood is
L(µ; X1, X2) =

1
4

e−|X1−µ|e−|X2−µ|,

and the log-likelihood is
`(µ; X1, X2) = −|X1 − µ| − |X2 − µ| − ln 4.

For any µ between X1 and X2 (inclusive), the log-likelihood is −|X1 − X2| − ln 4. For any µ outside that range, it is lesser. (For
example if µ is less than min{X1, X2}, then the log-likelihood is −|X1 − X2| − 2|µ −min{X1, X2}| − ln 4).
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Q7. [16 pts] Dual Ridge Regression & Leave-One-Out Error
[This question has four independent parts. If you get stuck on one, try the others. Each part depends on the statements made in
the previous parts, but not on your answer to the previous parts. Please show your work!]

Let X be an n × d design matrix representing n sample points with d features. (The last column of X may or may not be all 1’s,
representing a fictitious dimension; it won’t affect this question.) Let y ∈ Rn be a vector of labels. As usual, Xi denotes the ith
sample point expressed as a column vector (X>i is row i of X) and yi denotes the ith scalar component of y. Recall that ridge
regression finds the weight vector w∗ minimizing the cost function

J(w) = ‖Xw − y‖2 + λ‖w‖2

where λ > 0 is the regularization hyperparameter. Because λ > 0, every regression problem we will consider here has exactly
one unique minimizer. For X and y, the unique minimizer of J is denoted by w∗, giving a unique linear hypothesis h(z) = w∗ · z.

(1) [4 pts] Regression doesn’t usually have zero training error; we would like to check the value h(Xi) = w∗ · Xi to see how
close it is to yi. Recall the dual form of ridge regression and use it to show that w∗ · Xi = y>(K + λI)−1Ki, where K
is the kernel matrix and Ki is column i of K. Show your work. (Note: we are not lifting the sample points to another
feature space; we are just doing dual ridge regression with kernel matrix K = XX>.)

In dual ridge regression, we set w = X>a where a ∈ Rn is a vector of dual weights, and the optimal dual solution is a∗ =

(K +λI)−1y, so w∗ = X>(K +λI)−1y. Thus w∗ ·Xi = y>(K +λI)−1XXi. Column i of K = XX> is XXi, so w∗ ·Xi = y>(K +λI)−1Ki.

The Leave-One-Out (LOO) error of a regression algorithm is the expected loss on a randomly chosen training point when you
train on the other n − 1 points, leaving the chosen point out of training. Let Xi denote the (n − 1) × d design matrix obtained by
removing the sample point Xi (the ith row of X) from X, and let yi ∈ Rn−1 denote the vector obtained by removing yi from y.
Let Ji be the cost function of ridge regression on Xi and yi, and let wi be the optimal weight vector that minimizes Ji(w).

(2) [4 pts] Suppose that after we perform ridge regression on Xi and yi, we discover that our linear hypothesis function just
happens to fit the left-out sample point perfectly; that is, wi · Xi = yi.

Prove that w∗ = wi. That is, removing the sample point Xi did not change the weights or the linear hypothesis. (Hint:
find the difference between J(w) and Ji(w) (for an arbitrary w), then reason about the relationships between J(w), Ji(w),
Ji(wi), and J(wi).)

J(w) =

n∑
j=1

(X j · w − y j)2 + λ‖w‖2 and Ji(w) =
∑
j,i

(X j · w − y j)2 + λ‖w‖2.

Hence J(w) − Ji(w) = (Xi · w − yi)2. Therefore, J(w) ≥ Ji(w) for all w. By assumption, wi · Xi = yi, so J(wi) = Ji(wi). Recall
that wi is the weight vector that minimizes Ji.

It follows that for every w ∈ Rd, J(w) ≥ Ji(w) ≥ Ji(wi) = J(wi). Hence wi minimizes J. J has only one unique minimizer,
which we call w∗, so w∗ = wi.

Suppose we are not so lucky, and it turns out that wi · Xi , yi. Let y(i) ∈ Rn denote the vector obtained by taking y and changing
the ith component, replacing yi with wi · Xi. Let w(i) be the optimal weight vector that minimizes the ridge regression cost
function on the inputs X and y(i). Our result from part (b) shows that w(i) = wi.

(3) [4 pts] From part (a), show that w(i) · Xi − w∗ · Xi = (w(i) · Xi − yi) (K + λI)−1
i Ki, where (K + λI)−1

i denotes row i of
(K + λI)−1. (Hint: The result from part (a) implies that w(i) · Xi = y(i) · (K + λI)−1Ki. What does y(i) − y look like?)

y(i) − y = [0 . . . 0 wi · Xi − yi 0 . . . 0]>, a vector of all zeros except in component i, so by part (a),

w(i) · Xi − w∗ · Xi = (y(i) − y)>(K + λI)−1Ki = (wi · Xi − yi) (K + λI)−1
i Ki = (w(i) · Xi − yi) (K + λI)−1

i Ki.
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The Leave-One-Out error is defined to be

RLOO =
1
n

n∑
i=1

(wi · Xi − yi)2 =
1
n

n∑
i=1

(w(i) · Xi − yi)2.

The LOO error is often an excellent estimator for the regression loss on unseen data. In general, the computation of LOO error
can be very costly because it requires training the algorithm n times. But for dual ridge regression, remarkably, the LOO error
can be computed by training the algorithm only once! Let’s see how to compute the terms in the summation quickly.

(4) [4 pts] Show that w(i) · Xi − yi =
w∗ · Xi − yi

1 − (K + λI)−1
i Ki

.

From part (c), we have

(w(i) · Xi − yi) − (w∗ · Xi − yi) = (w(i) · Xi − yi)(K + λI)−1
i Ki

(w(i) · Xi − yi)(1 − K + λI)−1
i Ki) = w∗ · Xi − yi

w(i) · Xi − yi =
w∗ · Xi − yi

1 − (K + λI)−1
i Ki

.

Postscript: We can add the kernel trick to this method if we want; it adds no difficulties, though for speed we usually want to
use the kernel function to compute K and each w∗ · Xi. The technique also requires us to compute the diagonal of (K + λI)−1K,
which is probably best done by a Cholesky factorization of (K + λI)−1 and backsubstitution.
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