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Figure 1: The Atari 2600 game MsPac-man.

Abstract

The first version of the Deep Q-Network by DeepMind (Huang, 2013) was capable
of human-level performance on a number of classic Atari 2600 games. The
algorithm used a CNN architecture which based its strategy from vision, much like
a human player. Training from scratch with no prior knowledge of the environment,
it discovered strategies that enabled it to exceed human benchmarks. Since then,
many refinements and optimisations have been attempted, and we aim to benchmark
some of the recent advancements with the MsPac-man environment from the python
package Gym (Brockman et al., 2016).
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1 Problem Definition

1.1 MsPacman Atari 2600

MsPac-man (Figure 1) is a game where the title character is tasked with eating pellets in an enclosed
maze while avoiding four ghosts. Contact with a ghost causes the player to lose a life. Larger power
pellets are available, which let the player eat the ghosts. When the larger pellet is consumed the
ghosts turn blue and flee. Bonus fruit also appears, and when eaten increases the reward multiplies.
When all the pellets are consumed, the level ends and the next one begins.

As rounds increase, the speed increases and the large power pellets have a reduced timer for the
ghosts vulnerability phase. Four mazes appear in different color schemes of which follow

• Pink: levels 1 and 2,

• Blue: levels 3, 4 and 5,

• Brown: levels 6-9,

• Dark Blue: levels 10-14.

Three of the mazes have two sets of warp tunnels, when the player enters and appears from the
alternate side.

The ghosts have different colors, and behave in different ways. Blinky (red) directly chases the
player, Pinky (pink) and Inky (blue) try to position themselves in front of the player and Sue (orange)
switches between chasing and fleeing from the player.

2 Background

2.1 Actor Critic

The first approach we take is utilising an asynchronous advantage actor-critic (A3C) (Mnih et al.,
2016) agent. This is an actor-critic method, which combines learning approximations of both policy
and value functions (Sutton, 2018). This differs from the exclusively value-based approach of DQNs
(Mnih et al., 2013). The learned policy is referred to as the ’actor’ and the learned value function is
referred to as the ’critic’.

As covered by Sutton (2018), integrating direct approximations of action probabilities via the ’actor’
enables the agent to find a stochastic optimal policy, which an action-value method could not do
naturally. We might expect this to be of particular benefit to our MsPac-man environment since, as
mentioned above, the orange ghost switches between chasing and fleeing from the player - and all
ghosts switch back to chasing after a time following the consumption of a large pellet. Hence, an
element of stochasticity might allow our agent to better avoid ghosts, as it will not necessarily assume
that a ghost is running away.

A3C achieved much better results than previous GPU-based algorithms and showed better efficiency
at the time Mnih et al. (2016) introduced the method. The asynchronous advantage actor-critic (A3C)
has proved to perform well on Atari games while using a forward view instead of the typical view
often used by techniques such as eligibility traces.

The asynchronous RL framework uses asynchronous actor-learners that use multiple CPU threads on
a single machine instead of multiple machines. Instead of relying on replay memory, this framework
relies on parallel actors that employ different exploration policies thus maximizing diversity and
stabilizing learners. This method is advantageous as it allows for training deep neural networks
reliably without large resource requirements while also removing communication costs between
CPUs.

2.2 Deep-Q Networks

Neural Networks have proven to be universal function approximators (Hornick, 1989). DQNs build on
this success by splitting the architecture into constituent parts (Brockman et al., 2016). Convolutional
layers learn to detect abstract features of the game screen, then a dense classifier creates a map of the
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features present from the currently observed screen to an output layer equal to the size of the action
space.

The outputs generated by the action space represent the agent’s best guess of the reward it expects if
it were to take that specific action. This process is known as Value Based Learning, defined by the
action-value function Q∗(s, a) (Equation 1). Put simply, it represents the total value of taking a state
action pair (s, a) which is the sum of all future rewards R, scaled by the discount factor γ, which
defines how far into the future the agent can plan.

Q∗(s, a) = max
π

E
[
Rt + γtRt+1 + γ2rt+2 + . . . |st = s, at = a, π

]
(1)

The inability for the agent to see future states is solved by the deep learning process, mapping the
pixel images (game screen) to the Q-values and creating an approximation of the Q-function itself.
This allows the agent to make predictions on future state action pairs and their associated rewards.

The loss by which this is minimised through gradient descent is a variable of Temporal Difference
(Equation 2). Its loss is the difference between the true Q values and the estimation of them, where
the goal is to achieve the reward plus the Q value of the next state action pair.

Li(θi) =
[
Rt+1 + γt+1 max

a′
Q−
θ (S + t+ 1, a′)−Qθ(St, At)

]2
(2)

As the fundamental nature of RL creates an ever-changing dataset, modifications to the basic DQN
have been made over the years to stabilize the Q table approximations. We aim to implement all
of the modifications published by the Rainbow (Hessel et al., 2018) paper where the performance
improvements are shown in Figure 2.

A few of the modifications are:

• Dueling (Wang et al., 2015): Two identical branches are created where one branch deals
with the target values, and the original processes the estimations. Only the original is trained,
and the target value branch receives updated weights in a piecemeal fashion.

• Experience Buffer (Schaul et al., 2015): This buffer represents all of the agents past experi-
ence, defined as (St, At, Rt+1, γt+1, St+1) (state, action, reward, terminal, next state). Two
new terms are saved, which lets the agent remember when the terminal state is reached, and
what happened in its next state when it took an action from its current state last time.

As a result of the architectural decisions made, the DQN is classified as an off-policy, model-free
algorithm. It learns to predict the value associated with position, but doesn’t build a model of its
environment in order to make those predictions (model-free), and the training examples are created
from a previous version of itself (off-policy).

To account for exploration, DQNs initialise a variable epsilon ϵ = 1.0. For each step, a random
number is chosen ∈ (0, 1), which if less than ϵ will cause the agent to take a completely random action,
ignoring the Q table entirely. In the initial stages, this happens every time, due to the initialisation
of ϵ = 1.0. As training continues though, ϵ is annealed down to a much lower figure, decreasing
the odds of the agent taking a random action, and instead following the Q table. Such exploration is
known as Epsilon Greedy.
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Figure 2: The median human-normalized performance across 57 Atari games (Hessel et al., 2018).

3 Method

The two methods we chose to implement are Asynchronous advantage actor-critic (A3C) and
Rainbow.

According to Figure 2, from Hessel et al. (2018), these were the highest performing methods when
applied to Atari games (at the time of writing). This provided the motivation for our choices: proven
historical performance. Furthermore, Hessel et al. (2018) shows that the variety of modifications that
Rainbow introduces are all beneficial for MsPac-man specifically (for some Atari games this is not
the case).

As for A3C, and as mentioned in Section 2.1, we would expect a stochastic policy introduced by the
’actor’ part of A3C to benefit our agent; given the stochastic behaviour of the ghosts.

3.1 Actor Critic - A3C

As covered above, our first agent uses the A3C algorithm introduced by Mnih et al. (2016), which
maintains a policy π(at|st; θ) and an estimate of the value function V (st; θv). A3C has proven to
perform well on Atari games while using a forward view instead of the previously typical view often
used by techniques such as eligibility traces (Sutton, 2018). The majority of code that we have found
that implements this algorithm is often messy, complex, and difficult to understand. Therefore, we
decided to utilise a much more concise and simple code for our project.

The policy and the value function for this method are updated after every tmax action or when a
terminal state is reached, where tmax a hyper-parameter we choose (chosen to be 20, as opposed to 5
used by Mnih et al. (2016)). The update performed by the algorithm can be seen as:

∇θ′ logπ(at|st; θ
′
)A(st, at; θ, θv) (3)

Included in our implementation is entropy regularization, as suggested by Mnih et al. (2016), who
found that including this “improved exploration by discouraging premature convergence”. Including
this feature, the gradient of the full objective function including the entropy regularization term with
respect to the policy parameters takes the form (with H as entropy):

∇θ′ logπ(at|st; θ
′
)(Rt − V (st : θv)) + β∇θ′H(π(st; θ

′
)) (4)
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To implement A3C as outlined above, we adapt code from Greydanus (2017). For the actor and critic
neural network architectures, a series of convolution layers are followed by GRU cells. A GRU cell is
used “because it has fewer parameters, uses one memory vector instead of two, and attains the same
performance as an LSTM cell” (Greydanus, 2017). The only difference between the architectures is
that the activation layers have 9 and 1 outputs for actor and critic respectively. This is because the
actor model needs to be used to obtain probabilities for each of the 9 actions, whereas the critic only
needs to output a single value estimate.

Preprocessing is performed on the raw pixel inputs representing the state the game is in. Firstly, the
bottom section of the screen is cropped out, as this is almost completely static (it only contains the
number of lives and items the agent has obtained). Then, the 3 array layers representing the rgb input
are flattened into a single gray-scaled layer. This decision was made to improve efficiency of training.
However, we might expect that this will marginally impact performance, noting that the different
coloured ghosts behave slightly differently. Finally, some resizing and normalising is performed.

The optimizer used to train the actor and critic model weights is Adam (Kingma and Ba, 2014).
This is in contrast to the RMSProp optimizer used in the original Mnih et al. (2016) paper for A3C.
Kingma and Ba (2014) illustrate that Adam effectively integrates the ideas of RMSProp and improves
upon it via a variety of metrics. Hence, we would expect that - had A3C been developed after Adam
was introduced - Mnih et al. (2016) would also have used it.

As with the Rainbow approach detailed below, a modification to the environment we make for our
A3C agent is the inclusion of a death penalty. It was hoped that this would improve performance by
encouraging the agent to avoid the ghosts. We hypothesized that the agent might sometimes utilise
the ghosts as a means to ’teleport’ back to the starting location. Or on a more basic level, it might not
see the ghosts as being detrimental to its reward seeking objective.

3.2 Rainbow

Deep-Q Networks (Huang, 2013) are an algorithm subset of Reinforcement Learning (Sutton and
Barto, 2014). In RL, an agent is placed into an environment and seeks to maximize a pre-defined
reward. An action is taken, which alters the environment and a reward is given in alignment with the
altered state. The new state is then observed and a new action taken, completing the cycle until a
termination condition is met inside the environment. Such a decision process is known as a Markov
Decision Process.

Video games such as MsPacman however, are technically partially observable MDPs, as you are
forced to make choices based on the screen rather than the underlying code defining the environment
itself. Games such as these are constrained by a finite amount of input actions and frame rates which
allow us to map large observation spaces into more manageable discrete action spaces.

The Rainbow paper (Hessel et al., 2018) by DeepMind examined six enhancements to the DQN
algorithm, and studied different combinations of their implementation. The combination provided
state-of-the-art performance, of which the components are outlined in Appendix E. The implemented
base DQN architecture is shown in Figure 6, and the rainbow architecture is shown in Figure 2.

3.3 Modifications to Rainbow

Penalising Death

Mnih et al. (2013) states that

“Since the scale of scores varies greatly from game to game, we fixed all
positive rewards to be 1 and all negative rewards to be −1, leaving 0 rewards
unchanged. Clipping the rewards in this manner limits the scale of the error
derivatives and makes it easier to use the same learning rate across multiple games.
At the same time, it could affect the performance of our agent since it cannot
differentiate between rewards of different magnitude.”

We chose to not use this scaling feature in our use case as we wanted to penalise death significantly
to allow the agent to avoid ghosts. The wrapper used for this is shown in Listing .1.
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Color Channels

As the individual ghosts have separate AI based upon their colour, we chose a strategy of adding the
colour channels to allow the agent to detect this variation.

The rainbow paper used a sequence of four game frames stacked together, making the dimension
(4, 84, 84). The action that agents choose depends on a prior sequence of events. This allows the
detection of direction and movement.

There is also a frame skipping parameter, of which each state consists of 4 consecutive overlapping
frames. For example, state s1 = (x1, x2, x3, x4) is used as one state, and the next state uses
s2 = (x2, x3, x4, x5). Lastly the component wise maximum is taken between the last two consecutive
frames, as some atari games render information every other frame. This step is not as crucial now, as
no frame skip environments have been added to gym recently.

We chose to use this frame stacking approach and incorporate the colour channels into an input of
(12, 84, 84), of which we use frame skipping of 9 to have 12 consecutive overlapping frames.

4 Results

Figure 3: Average undiscounted return for 25m frames of training

Figure 3 shows the results of our agents’ learning. The basic DQN agent with no modifications
performs very poorly. Whilst achieving a high score over 1000, it does not learn at all (as evidenced
by the flat curve).

Our A3C agent converges fairly quickly after around 8 million frames - with a high score of 3020
(not illustrated in 3 as this displays only average rewards). This compares favourably with the A3C
agent from the original Mnih et al. (2016) paper, which achieves a high score of 850.7.

The Rainbow agent performs much better, achieving a high score of 7070 (as shown in the video).
This does not appear in Figure 3 due to the difference in performance from training to testing
parameters - more ’exploitation’ is encouraged during testing. We can also observe that the agent
has not yet converged to a policy - this provides encouragement that better performance could be
achieved, given more time to train.

Our best overall score of 7070 compares very well with the results from a number of agents for
MsPac-man. As can be seen in Stojnic (2022), this places our performance at 12th on the ranking list.
This places it above DDQN, A3C (as shown by our implementation and the original paper), A2C and
Gorila, to name a few. The score of 7070 is roughly comparable to that of the average human (we
obtained an average performance of 6300 within our group).
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5 Discussion

Overall, we can see that our high score of 7070 is better than all but one paper released prior to 2018
(Stojnic, 2022). Our implementation of Rainbow can therefore be said to be utilising reinforcement
learning methods at the forefront of current research. As shown by Hessel et al. (2018), who achieve
a high score of around 6000 using Rainbow, the various modifications included in Rainbow are all
beneficial for MsPac-man. The suitability of Rainbow to our problem is a large contributing factor to
our success in this project.

Our A3C agent obtains a score higher than that of the original paper (Mnih et al., 2016). This
improvement can be attributed to the improvement in optimizer (the original paper used RMSProp
whereas our implementation uses Adam), and the inclusion of a death penalty. We can also assume
that the results obtained by Mnih et al. (2016) in the A3C paper follow the same [-1, 1] clipping
procedure as in DQN (Mnih et al., 2013), which will contribute to its weaker performance for MsPac-
man. Overall, we can say that our agent is more suited to the specific MsPac-man environment, as it
applies modifications more specific to the problem, which the agent in the original paper does not.

Both our Rainbow agent and A3C agent perform very well compared to the scores reported in
their respective papers, as mentioned above in the Results section. Therefore, we can say that our
implementations have been successful, particularly considering the fact that our high score of 7070
is comparable to the performance of a human. However, when compared to the ’solved’ score of
999990, achieved by van Seijen et al. (2017), we are still a long way off. As a side note, it is worth
mentioning that van Seijen et al. (2017) also incorporate a death penalty (a -1000 reward); validating
further the similar approach we took.

One factor that we should also take into account when considering our performance is the length of
training for each agent. We had limited time and resources to train our agents and therefore fell far
short of most papers training lengths which can number in the 200M (see Mnih et al. (2016)) - 20B
(see ’MuZero’ (Schrittwieser et al., 2020)) frames of training. Considering that the main weakness
of our final agent was that it became confused in a new environment it may be that further training
to this industry convention could enable higher performance. However, an ideal agent would be
one which learns from as little interaction with the environment as possible, so this requirement for
further training may indicate that another method or further modifications would also benefit our
performance.

6 Future Work

Attempting to implement an Importance Weighted Actor-Learner Architectures (IMPALA) (Espeholt
et al., 2018) agent for MsPac-man would be the most obvious choice for future work with regards to
this project. In their paper, Espeholt et al. (2018) show that a deep IMPALA agent achieves a score of
7342.32 on MsPac-man. As covered in the paper, IMPALA vastly improves on the performance of
older actor-critic methods such as A3C. This is borne out in the performance of our A3C agent, as
well our Rainbow agent; both of which do not achieve a score as high as that reported in the IMPALA
paper.

One of the key improvements IMPALA makes is the ability to “scale to thousands of machines
without sacrificing data efficiency or resource utilisation” (Espeholt et al., 2018). It is shown in the
paper that IMPALA can process around 250000 frames per second, compared to around 50000 frames
per second for a3c, over a distributed, multi-machine setup. Whilst speed is not necessarily of vital
importance, when combined with the improvement in overall score, it can be said that IMPALA is a
universally superior method when compared to our a3c and Rainbow agents.

However, one key feature of IMPALA that would not be applicable to our problem is the “multi-task”
approach IMPALA takes. Via this approach, IMPALA trains on multiple environments at once -
for example the 57 ATARI games in the ALE (Bellemare et al., 2013) suite - achieving “positive
transfer” between tasks. Since we are only interested in the MsPac-man environment, this would not
be necessary.

The random network distillation (RND) (Burda et al., 2018) method which integrates “intrinsic
rewards” would also be of interest. Burda et al. (2018) test the performance of RND on several
ATARI games, but not MsPac-man. Therefore, it would be illuminating to test an implementation of
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RND on MsPac-man. In particular, it might be expected to improve upon performance in the later
stages of a game; where our current A3C and Rainbow agents might struggle to deal with sparse
rewards. In addition, when the environment changes slightly upon clearing a level, it might benefit
the agent to be curious to explore new areas.

Modifying the frame-stacking approach used by DeepMind (Huang, 2013) may also prove to be
a beneficial approach for MsPac-man specifically. As each of the ghosts have unique AI, it could
prove advantageous for the agent to find new strategies associated with predictive movements
and behaviours. We attempted to implement this, in a similar vein using frame stacking, but the
performance was less optimal given our constraints on training time. A better approach may be to
have three separate networks for each RGB channel which then share information between each other
and update the Q tables with the most beneficial states and actions.

7 Personal Experience

Peter: My experience of the project was a largely positive one. Working on the actor-critic agent
allowed me to solidify my knowledge of this family of methods, whilst attempting to train an
agent for MsPac-man improved my understanding of how and why RL methods struggle. My only
disappointment would be the failed attempt at training an agent to play the “Amazons” (Huang and
Li, 2019) board game.

Max: As most of the rainbow agent training was done on my machine I probably observed the most
games of MsPac-Man being played. While often infuriating watching the agent constantly miss
optimal plays or in some extreme cases choose to change direction straight into a ghost. It was
interesting to see the impacts that each of our modifications had on the agent. Going from essentially
guessing what to do at each step to strategically avoiding the ghosts and using power-ups as a shield.

Stephen: Initially we attempted to write an environment from scratch for the “Game of the Amazon”
(Huang and Li, 2019), but this proved too difficult to implement within the time scale, and the focus
of the assignment was implementing the policy itself. I worked on writing the DQN and agent, of
which we extended to include all of the Rainbow (Hessel et al., 2018) components as the ablation
studies showed that all components positively contributed to agent performance. My attempt to
incorporate all RGB channels was not successful, but for this environment in particular I feel perhaps
that each channel could have its own independent branch, to detect variations in AI from each of
the ghosts. I’m pleased with the replication of the Rainbow paper though, and I feel the assignment
helped solidify my understanding of DQNs in general.

Kwabena: Working on this project improved my understanding of the RL methods implemented.
Comparing the performance of the actor-critic and rainbow methods in our case, saw the high score
of the agent move from 3020 in the actor-critic, to 7070 in the rainbow method with the effect of the
death penalty having a greater impact in the rainbow method.

Hiba: I don’t have much to add to what has already mentioned. I thoroughly enjoyed the project.
Most of the difficulties I encountered involved working with OpenAI Gym!
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A Problem definition

A.1 Objective

Our objective in this project was to make an agent which could maximise its rewards before reaching
a game over. A game over occurs when MsPac-Man has lost all 3 lives by coming into contact with a
ghost 3 times. The main difficultly in this game comes from navigating each of the game’s 14 levels
(4 mazes) while avoiding the ghost enemies who roam around it. Each ghost has a different AI and
rewards vary for each type of action meaning there is a large amount of information for the agent to
consider. Additionally once lives are lost there is no way to get them back meaning that if an agent
clears a maze with only one life remaining they will still only have one life going forward into the
next maze.

A.2 Ghost AI

: There are 4 main ghosts in MsPac-Man, Blinky (red), Pinky (pink), Inky (cyan) and Sue (orange).
These ghosts have have 2 distinct phases in their AI, scatter and normal behaviour.

During scatter:

1. Blinky and Pinky move randomly.
2. Inky and Sue move to designated corners of the level.

This scatter phase usually lasts for only the first few seconds of the level. Then they move permanently
into their normal movement patterns, with very occasional bursts of changing direction to make their
patterns unlearn-able.

During normal movement:

1. Blinky alternates between random movement and directly chasing MsPac-Man around the
maze.

2. Pink chases towards the spot 2 Pac-Dots in front of Ms. Pac-Man trying to get close.
3. Inky’s target is move complex, his target is relative to both Blinky and Ms.Pac-Man, where

the distance Blinky is from Pinky’s target is doubled to get Inky’s target.
4. Sue chases directly after MsPac-Man, but tries to head to her Scatter corner when within an

8-Dot radius of her, which is at the bottom left of the maze.

A.3 Rewards

There are 3 main ways for MsPac-Man to earn rewards:

1. Picking up Pac-Dots these are the small rectangular blocks (small square shapes in the actual
game) and are worth 10 points each. Additionally there are Power-Pellets these are the
glowing square shaped blocks (circles in the actual game) which grant 50 points and turn
ghosts into a fearful state.

2. When ghosts are in this fearful state they begin to move away from MsPac-Man who can
now eat them to imprison them in the centre of the map and gain points. The first ghost
MsPac-Man eats is worth 200 points and subsequent ghosts are worth double. For example
if MsPac-Man ate all 4 ghosts during 1 power-up she would gain 200+400+800+1600 =
3000 points.

3. Finally every level at some point spawns a piece of fruit which moves around the maze.
Each piece of fruit is worth a variable amount of points:

• Cherry: 100 points.
• Strawberry: 200 points
• Orange: 500 points
• Pretzel: 700 points
• Apple: 1000 points
• Pear: 2000 points
• Banana: 5000 points
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A.4 Movement options

MsPac-man has only 4 movement options up, down, left, and right. If she collides with a wall she
immediately stops moving until another input is given. There are also tunnels that exist within most
of the maps which allow for MsPac-Man to travel to the other side. While ghosts are also able to use
this feature, during the first 3 rounds of the game doing so temporarily reduces their movement speed.
Finally when a ghost is eaten while in a fearful state as defined above they are transported into the
central area of the maze where they are held for a few seconds before being released back into the
maze.

B Hyper-Parameter Selection

B.1 A3C

Hyper-parameters are largely taken from those used by Mnih et al. (2016) and Greydanus (2017).
Alterations include: death penalty (0 death penalty in the papers -> -500 for our environment) and
Tau (Greydanus (2017) uses 1.0, we use 0.999). Explanations of hyper-parameters are available in
Mnih et al. (2016). Hyper-parameters were chosen by a review of the literature and consideration of
the environment.

Hyper-parameter Value
Grey-scaling True
Observation down-sampling (80, 80)
Reward clipping None
Processes 28
Optimizer learning rate 0.0001
NN hidden units 256
Gamma 0.99
Tau 0.999
Horizon 0.99
Tmax 20
Terminal on loss of life False
Death Penalty -500
Max frames per episode 10k

Table 1: A3C Hyper-parameters

B.2 Rainbow

We used many of the same processing steps and hyper-parameters from the Rainbow paper (Hes-
sel et al., 2018), but made alterations to better suit our chosen environment. The environment
preprocessing consisted of:

Hyper-parameter Value
Grey-scaling True
Observation down-sampling (84, 84)
Frames stacked 4
Action repetitions 4
Reward clipping None
Terminal on loss of life False
Death Penalty -500
Max frames per episode 108K 100k

Table 2: Pre-Processing: Observations are grey-scaled and resized to 84×84 pixels. Four consecutive
frames are stacked to represent each state. Every action selected is repeated four times by the agent.
No reward clipping occurs to ensure impact of the death penalty specific to this environment.
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Hyper-parameter Value
Q network: channels 32, 64, 64
Q network: filter size (8 × 8), (4 × 4), (3 × 3)
Q network: stride 4, 2, 1
Q network: hidden units 512
Q network: output units 9
Discount factor 0.99
Memory size (PER) 1,000,000
Replay period every 4 agent steps
Minibatch size 32
Optimizer Adam
Learning rate 0.0001
Noisy Layers std 0.5
n-step 3
Update Frequency 500
Discount Factor 0.99
Atoms 51

Table 3: Hyper-parameters: The base DQN has 3 convolutional layers with 32, 64 and 64 channels.
Each layer uses (8 × 8), (4 × 4), (3 × 3) filters with strides 4, 2and1 respectively. The dueling
architecture with value and advantage branches each have a hidden layer size of 512 units. The output
of the network is the available number of actions of the game, in this case 9. The Adam optimiser has
a learning rate of 0.0001. The number of atoms for the categorical DQN is 51. When noisy layers are
used, the epsilon greedy exploration parameter ϵ is set to 0.

C Experimental Details

C.1 A3C

To replicate the training of our A3C agent:

• Copy "a3c_agent_group9" folder

• pip install -r requirements.txt in "a3c_agent_group9" folder (ideally to a fresh
virtual env)

• python main_a3c.py within "a3c_agent_group9" folder

• If rendering is desired, change the global "RENDER" variable from "False" to "True"

• Note: the "PROCESSES" global variable has been set to 8 to limit computation load on the
computer, but was 28 in our trained version (from which the results were obtained)

C.2 Rainbow

To replicate the training of our Rainbow agent:

• Copy "rainbow_agent_group9" folder

• pip install -r requirements.txt in "rainbow_agent_group9" folder (ideally to
a fresh virtual env)

• python main_rainbow.py within "rainbow_agent_group9" folder

• In order to enable GPU usage an additional command "pip3 install
torch==1.10.0+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html"
must be run

• If rendering is desired, change render to be True inside of atari_wrapper.py and death
to False in order to get the real scores

• In the event of a paging file error you may need to reduce the number of environments being
created, these can be found on line 408, 409, 499 and 500
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• In the event of an unable to allocate memory error please reduce the memory size found on
line 458

D Algorithm Pseudocode

Figure 4: The pseudo-code procedure for A3C (Mnih et al., 2016).

Figure 5: The pseudo-code procedure for a DQN with Prioritized Experience Replay (Mnih et al.,
2013).

E Rainbow Components

Double Q-Learning

Double DQN (van Hasselt et al., 2015) fixes the overestimation bias of Q-learning by separating the
selection and evaluation of bootstrapped actions. Combining this method with the base DQN gives us
the loss

Li(θi) =

[
Rt+1 + γtQ

−
θ

(
St+1, argmax

a′
Qθ(St+1, a

′)

)
−Qθ(St, At)

]2
. (5)

Dueling

Dueling (Wang et al., 2015) is a Network architecture which enables actions to be generalised by
representing state values and action advantages separately. These value and advantage streams share
a convolution encoder, which merges by the following aggregator
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Qθ(s, a) = υη (fε(s)) + aψ(fε(s), a)−
∑
a′ aψ(fε(s), a

′)

Nactions
. (6)

Our implementation is contained within the Rainbow class which inherits directly from the base DQN
object (Listing

.3).

Distributional DQN

Bellemare et al. (2017) states that a Distributional DQN learns an approximate categorical distribution
of discounted returns Z(s, a), instead of approximating the expected return Q(s, a). Z(s, a) satisfies
a distributional Bellman equation:

Z(s, a) = R(s, a) + γZ(s′, a′). (7)

This distribution of returns is discrete and parameterized by the number of atoms N ∈ N and
Vmin, Vman ∈ R. The support for the distribution of atoms is

{
zi

def
= Vmin + i∆z : 0 ≤ i < N

}
for ∆z

def
=

Vmax − Vmin
N − 1

. (8)

The atom probabilities are predicted using a softmax distribution

Zθ(s, a) =

{
zi with probability pi =

efi(s,a)∑
j e
fj(s,a)

}
. (9)

The network is then trained to minimise the Kullbeck-Leibler divergence between the current
distribution and the one-step update

DKL

(
Φ(R+max

a′
Z(s′, a′)||Z(s, a))

)
. (10)

Noisy DQN

A Noisy DQN (Fortunato et al., 2017) adds stochastic network layers for exploration. This adds a
noisy stream to the deterministic weights in the form of

y = (b+Wx) + (bnoisy ⊙ ϵb + (W noisy ⊙ ϵω)x) (11)

where ϵω and ϵb are random variables. The noise ϵ is a factorised Gaussian in matrix form. If ϵi,j
corresponds to a layer with i, j inputs and outputs, we can generate independent noise ϵi, ϵj for input
and output neurons where

ϵi,j = f(ϵi)f(ϵj) (12)

for f(x) = sign(x)
√
|x|. When noisy layers are used, ϵ-greedy is no longer used, and instead are

entirely greedy.

Our implementation is contained with the NoisyLinear class (Listing .2), adapted from here.

Prioritized Experience Replay

Prioritized experience replay (Schaul et al., 2015) allows an agent to replay transitions from which
there is more to learn. Samples are drawn with probability pt relative to the last encountered absolute
temporal difference error.

pt ∝
∣∣∣Rt+1 + γt+1 max

a′
Q−
θ (St+1, a

′)−Qθ(St, At)
∣∣∣ω (13)
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We chose to use the existing data structures in Tianshou (Weng et al., 2021) as they allow for
efficient computation using the PrioritizedVectorReplayBuffer class.

N-step Temporal Difference

Used in A3C (Mnih et al., 2016), learning from multi-step bootstrap targets (Sutton and Barto, 2014)
shifts the bias-variance trade off which enables newly observed rewards to propagate to previously
visited states. The truncated n-step return from a state St is

R
(n)
t ≡

n−1∑
k=0

γ
(k)
t Rt+k+1. (14)

The multi step variant loss then becomes

Li(θi) =
[
R

(n)
t + γ

(n)
t max

a′
Q−
θ (St+n, a

′)−Qθ(St, At)
]2

. (15)

F Code

# Returns reward - 100 when hitting a ghost
class PenaliseDeath(gym.RewardWrapper):

"""Penalise suiciding into ghosts!"""
def __init__(self, env):

super().__init__(env)
self.total_lives = 3

def reward(self, reward):
self.total_lives_left = self.env.unwrapped.ale.lives()
if self.total_lives_left < self.total_lives:

self.total_lives -= 1
return reward-500

return reward

def reset(self):
if self.was_real_done:

obs = self.env.reset()
else:

obs = self.env.step(0)[0]
self.total_lives = self.env.unwrapped.ale.lives()
return obs

Listing .1: Returns reward - 500 when hitting a ghost.
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class NoisyLinear(nn.Module):
"""Implementation of Noisy Networks. arXiv:1706.10295.

Adapted from https://github.com/ku2482/fqf-iqn-qrdqn.pytorch/blob/master
/fqf_iqn_qrdqn/network.py .

"""

def __init__(self, in_features, out_features, noisy_std = 0.5):
super().__init__()

# Learnable parameters.
self.mu_W = nn.Parameter(torch.FloatTensor(out_features, in_features))
self.sigma_W = nn.Parameter(torch.FloatTensor(out_features, in_features))
self.mu_bias = nn.Parameter(torch.FloatTensor(out_features))
self.sigma_bias = nn.Parameter(torch.FloatTensor(out_features))

# Factorized noise parameters.
self.register_buffer('eps_p', torch.FloatTensor(in_features))
self.register_buffer('eps_q', torch.FloatTensor(out_features))

self.in_features = in_features
self.out_features = out_features
self.sigma = noisy_std

self.reset()
self.sample()

def reset(self):
bound = 1 / np.sqrt(self.in_features)
self.mu_W.data.uniform_(-bound, bound)
self.mu_bias.data.uniform_(-bound, bound)
self.sigma_W.data.fill_(self.sigma / np.sqrt(self.in_features))
self.sigma_bias.data.fill_(self.sigma / np.sqrt(self.in_features))

def f(self, x):
x = torch.randn(x.size(0), device=x.device)
return x.sign().mul_(x.abs().sqrt_())

def sample(self):
self.eps_p.copy_(self.f(self.eps_p))
self.eps_q.copy_(self.f(self.eps_q))

def forward(self, x):
if self.training:

weight = self.mu_W + self.sigma_W * (
self.eps_q.ger(self.eps_p)

)
bias = self.mu_bias + self.sigma_bias * self.eps_q.clone()

else:
weight = self.mu_W
bias = self.mu_bias

return F.linear(x, weight, bias)

Listing .2: The NoisyLinear Layer.
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class DQN(nn.Module):
"""Reference: Human-level control through deep reinforcement learning."""

def __init__(
self,
c, # Channels - In this case, stacked frames.
h, # Height
w, # Width
action_shape, # Action Space
device="gpu",

output_dim=None,
):

super().__init__()
self.device = device
self.DQN = nn.Sequential(

nn.Conv2d(c, 32, kernel_size=16, stride=4), nn.ReLU(inplace=True),
nn.BatchNorm2d(32),
nn.Conv2d(32, 64, kernel_size=12, stride=2), nn.ReLU(inplace=True),
nn.BatchNorm2d(64),
nn.Conv2d(64, 64, kernel_size=4, stride=1),
nn.ReLU(inplace=True),
nn.Flatten()

)
with torch.no_grad():

self.output_dim = np.prod(self.DQN(torch.zeros(1, c, h, w)).shape[1:])

if output_dim is not None:
self.DQN = nn.Sequential(

self.DQN, nn.Linear(self.output_dim, output_dim),
nn.ReLU(inplace=True)

)
self.output_dim = output_dim

def forward(self, obs, state=None, info={}):
r"""Mapping: s -> Q(s, \*)."""
obs = torch.as_tensor(obs, device=self.device, dtype=torch.float32)
return self.DQN(obs), state

class Rainbow(DQN):
"""Reference: Rainbow: Combining Improvements in Deep Reinforcement Learning."""

def __init__(
self,
c, # Channels - In this case, stacked frames.
h, # Height
w, # Width
action_shape, # Action Space
num_atoms = 51,
noisy_std = 0.1,
device = "cpu",

):
super().__init__(c, h, w, action_shape, device)
self.action_num = np.prod(action_shape)
self.num_atoms = num_atoms

self.Double_Q = nn.Sequential(
NoisyLinear(self.output_dim, 512, noisy_std), nn.ReLU(inplace=True),
NoisyLinear(512, self.action_num * self.num_atoms, noisy_std)

)

self.Dueling = nn.Sequential(
NoisyLinear(self.output_dim, 512, noisy_std), nn.ReLU(inplace=True),
NoisyLinear(512, self.num_atoms, noisy_std)

)
self.output_dim = self.action_num * self.num_atoms

def forward(self, obs, state = None, info = {}):
r"""Mapping: x -> Z(x, \*)."""
obs, state = super().forward(obs)
# Split the Q table into dueling
q = self.Double_Q(obs)
q = q.view(-1, self.action_num, self.num_atoms)
v = self.Dueling(obs)
v = v.view(-1, 1, self.num_atoms)

logits = q - q.mean(dim=1, keepdim=True) + v
probs = logits.softmax(dim=2)
return probs, state

Listing .3: DQN and Rainbow Classes.
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class QContinuumRainbow(DQN):
"""Reference: Rainbow: Combining Improvements in Deep Reinforcement Learning."""

def __init__(
self,
c, # Channels - In this case, stacked frames.
h, # Height
w, # Width
action_shape, # Action Space
num_atoms = 51,
noisy_std = 0.1,
device = "cpu",

):
super().__init__(c, h, w, action_shape, device)
self.action_num = np.prod(action_shape)
self.num_atoms = num_atoms

self.Double_Q = nn.Sequential(
NoisyLinear(self.output_dim, 512, noisy_std), nn.ReLU(inplace=True),
NoisyLinear(512, self.action_num * self.num_atoms, noisy_std)

)
self.Triple_Q = nn.Sequential(

NoisyLinear(self.output_dim, 512, noisy_std), nn.ReLU(inplace=True),
nn.Dropout(0.1),
NoisyLinear(512, self.action_num * self.num_atoms, noisy_std)

)

self.Dueling = nn.Sequential(
NoisyLinear(self.output_dim, 512, noisy_std), nn.ReLU(inplace=True),
NoisyLinear(512, self.num_atoms, noisy_std)

)
self.Double_Dueling = nn.Sequential(

NoisyLinear(self.output_dim, 512, noisy_std), nn.ReLU(inplace=True),
nn.Dropout(0.1),
NoisyLinear(512, self.num_atoms, noisy_std)

)
self.output_dim = self.action_num * self.num_atoms

def forward(self, obs, state = None, info = {}):
r"""Mapping: x -> Z(x, \*)."""
obs, state = super().forward(obs)
# Split the Q table into dueling
q = self.Double_Q(obs)
q = q.view(-1, self.action_num, self.num_atoms)
q2 = self.Triple_Q(obs)
q2 = q2.view(-1, self.action_num, self.num_atoms)
v = self.Dueling(obs)
v = v.view(-1, 1, self.num_atoms)
v2 = self.Double_Dueling(obs)
v2 = v2.view(-1, 1, self.num_atoms)
logits = q - q.mean(dim=1, keepdim=True) + v +\

q2 - q2.mean(dim=1, keepdim=True) + v2
probs = logits.softmax(dim=2)
return probs, state

Listing .4: Triple DQN, Double Dueling and Rainbow.
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Figure 9: Actor Neural Network for A3C
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Figure 10: Critic Neural Network for A3C
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