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Abstract

In infinite flat spacetime, the specific version of the twin paradox with a stay at

home twin and rocket twin, is resolved due to the inertial traveller changing direction,

indicating fundamental asymmetry. By imposing boundary conditions we create a

framework of compact space and counteract the need for a change of direction. Instead,

resolution relies on selection of a preferred frame, determined by the topology chosen

and recognising the asymmetry between observers that follows. The asymmetry between

worldlines arises through the topological invariance of their homotopy classes. This

illustrates how special relativity in such cases is only valid locally, hence preferred

inertial frames experience more proper time than any other. In a Friedmann described

universe, both the expansion of the universe, and the existence of multiply connected

topology for constant time hypersurfaces, break Poincaré invariance. This singles out

the same preferred inertial observer as before, who will age more quickly than her twin,

comoving with the cosmic fluid.
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Part I

Background

1 Introduction

Albert Einstein, in his seminal paper on Special relativity in 1905 [1], predicted that a

clock moving away in a spaceship and returning, would be found to lag behind a clock at

rest. In 1911, he restated his argument:

“If we placed a living organism in a box... one could arrange that the organism,

after any arbitrary lengthy flight, could be returned to its original spot in a

scarcely altered condition, while corresponding organisms which had remained in

their original positions had already long since given way to new generations.

For the moving organism the lengthy time of the journey was a mere instant,

provided the motion took place with approximately the speed of light.” [6]

In the same year, Paul Langevin posited the twin paradox [2] as we know it today. The

twin paradox is the most known thought experiment associated with relativity. A

paradox in scientific terms refers to results which arrive in contradiction. The twin

paradox is not in fact a paradox, and neither Einstein nor Langevin intended the idea to

be formulated as such.

Usually the scenario plays out with a pair of twins, commonly an astronaut and

earthbound pair, who come to a contradiction when measuring each others elapsed time.

The astronaut leaves earth and returns back to his home twin to find that he has aged

less, yet from his perspective using the same argument he sees the homebound twin

move away from him, and he is stationary. Thus he concludes that she has aged less and

what looked like a symmetrical idea, arrives to a paradox.

The twin paradox suggests a limitation of the principle of relativity. Independent

observers only have symmetry of measurement in inertial reference frames. An inertial
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reference frame is a coordinate system in space and time, such that observers can

identify uniform motion as opposed to accelerated motion. These frames are those which

move at a constant velocity where no acceleration can be felt. Twin observers in such

frames can not deduce which of the two are moving with respect to each other.

In classical mechanics we assume that the passage of time is the same in all inertial

reference frames. This is Galilean relativity and the usual formulae apply here where

space and time intervals are invariant, corroborating Newton’s concept of absolute space

and time. Special relativity on the other hand, assumes that the speed of light to any

non-accelerating observer is the same in all reference frames. Mathematical

transformations between inertial frames are given by the Lorentz transformations and as

consequence show us that space and time are not absolute but elastic. The space and

time intervals in fact depend on the relative velocity between the observer and an event

he observes.

From the Lorentz formulae a clock in motion ticks slower and distances appear shorter

than a clock at rest. These effects are formally called time dilation1 and length

contraction2. As both of these quantities are determined via the relationship between

velocity and the speed of light,

γ =
1√

1−
(
v
c

)2
,

the effect only manifests itself for velocities approaching the speed of light. Such speeds

are called relativistic. If a photon could carry a massless clock, no time would pass as its

proper time is always zero.

In this investigation we aim to impose boundary conditions and create a framework of

compact space to show that the resolution is much more of a subtle one, but provides us

insight about the limitations of equivalence between inertial reference frames. Therefore,

because of this new framework, it is important to understand the global properties of
1Moving clocks tick slower.
2Moving clocks appear shorter.
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such spacetime.

Topology is an extension of geometry which describes space, illustrating its features,

dimensions, connectivity, orientability, infiniteness or finiteness, without measurement.

Continuity is important in such a space, and can be visioned such that space can stretch

without tearing and ends be glued together. Space can be stretched, crushed or kneaded

in any way without changing its topology. We are primarily concerned with space of

zero curvature so that special relativity still applies. Our spacetime occupies the infinite

Euclidean plane and four others can be constructed from this which will later be shown.

For completeness I have shown a basic example of the Twin Paradox in The Classical

Twin Paradox (Section 3.2). This leads us to an intuitive result when the rules of

special relativity are understood. For a journey to be described by special relativity,

inertial reference frames must be maintained and a change of direction violates this

principle. The asymmetry discovered here is a more obvious one than the compact space

we aim to consider. Ultimately the reader will appreciate the subtleties of a compact

spacetime resolution, suggesting the idea of a preferred reference frame in which

calculation of time is trivial. This provides us with insight on what observers can expect

to understand about the compact universe they reside in.

Basic cylinder construction of our new spacetime is discussed in Defining the Periodic

Universe (Section 3.3). Later mappings are shown in Constructing the 3D Torus

(Section 4.3) and Constructing the 4D Hypertorus (Section 4.4).

The punchline ideas are explored in Periodic Twin Paradox (Section 3.5), Shining a

Torch in the Dark (Section 3.6) and Both Twins as Inertial Observers (Section 3.7).

Preferred reference frames and formulas for time difference depending of the period L

and velocity v are discovered providing observers the ability to determine such

quantities given valid knowledge of either variable.
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2 Overview of Special Relativty

2.1 The Principles Of Special Relativity

Special Relativity can be deduced from two postulates:

• The Principle of Relativity (Galileo): No experiment can measure the

absolute velocity of an observer; the results of any experiment performed

by an observer do not depend on his speed relative to other observers

who are not involved in the experiment.

• The Constancy of the speed of light (Einstein): The speed of light relative

to any non-accelerating observer is c = 3 × 108ms−1, regardless of the

motion of the light source relative to the observer.

These postulates infer that there is no sense in defining absolute motion, or rest, as

uniform motion is undetectable. The finite limit for the speed of light is itself what causes

relativistic effects to appear for the material universe. [5, 8]

2.2 Definition of an Inertial Observer in Special Relativity

An observer can be defined as a recorder of both space and time of a given event formally

written as

tx
y
z

, however in general we will be dealing with flat space-time
(
t
x

)
initially.

For such a coordinate system to be inertial it must satisfy the following:

• The distance between a point P1(x1) and P2(x2) is independent of time.

• Clocks that sit at every point passing time are synchronized and run at

the same rate.

• The geometry of space at any constant time is Euclidean.

Note however that acceleration is not mentioned. The consequences of which will be

explored later, and show that only non-accelerating observers can keep their clocks

synchronized.
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An observation made by an inertial observer is defined as recording
(
t
x

)
of an event in

the same space and time. In other words the clock reading must be taken precisely in

the location of the event to be called an inertial observer. This observation made by an

inertial observer is what we will also refer to as proper time. [5, 8]

2.3 Units for Special Relativity

Because the speed of light is now clarified as fundamental it makes sense to redefine the

way that we measure space and time. If we define c = 1 the new unit of time is the meter.

One meter of time is then the time taken for light to travel one meter. Illustrating this

we have:

c =
distance light travels in any given time interval

time taken for light to travel one meter
=

1m

1m
= 1

It follows from c = 3× 108ms−1 = 1 that

1s = 3× 108m and 1m =
1

3× 108s

From this we find that Energy and Momentum are now measured in kg, Acceleration in

m−1 and Force in kgm−1. [5, 8]

2.4 Spacetime Diagrams and Notational Conventions

A single point fixed by x and t is called an event. A line in space with relation x = x(t)

is known as a particles world line, the gradient of which is
dt

dx
=

1

v
. A light ray always

travels at a 45o line on a space-time diagram.

For all the work to follow we must be clear and concise with description, thus I will

define such notation here for reference.

• Events will use cursive capitals e.g. A, B, C and O will be used to describe

observers. Later, in context, I will be using observers Jack and Jill who
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Figure 1: A space-time diagram in natural units. [8]

will be defined as ÕJack and OJill respectively.

• The coordinates
(
t
x

)
are all measured in meters.

• The Greek index referred to as xα can take a value from the set 0, 1 thus(
t
x

)
would correspond to

(
x1

x2

)
in this case. If I state xα by itself I am

referring to all the coordinates implied.

• The Latin index referred to as xi distinguishes spacial coordinates only

where (x) would correspond to (x1).

[8]
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2.5 Constructing Multiple Observer Spacetime Diagrams

To illustrate both observers in a single diagram, we begin with O 7→
(
t
x

)
and Õ 7→

(
t̃
x̃

)
,

who travels with velocity v in the x direction relative to O.

Figure 2: The t̃ axis is the locus of events at constant x̃ = 0 which is the locus of the origin of Õ’s
spatial coordinates. This is Õ’s world line.
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(a) Light reflected at a, as measured by Õ.

(b) The reflection as measured by O.

Figure 3: The x̃ axis is the locus of events that reflect light rays such that they return to the t̃ axis at +a
if they left it at −a for all a. Geometrically this demonstrates the second postulate of Special Relativity.
Events simultaneous to Õ are not simultaneous to O. In other words the lines from respective frames O
and Õ are not parallel.
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(a) O

(b) Õ

Figure 4: The space-time diagrams represent the same physical situation. The one on the left is the
space-time diagram O, in which Õ moves to the right. The one on the right is drawn from the point of
view of Õ, in which O moves to the left. All four angles are equal to tan−1|v| where |v| is the relative
speed of O and Õ.
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2.6 Interval Invariance

The final construction of O’s coordinates require us to define length scale. The interval

between any two events is separated by coordinates (∆t,∆x) such that

∆2s = −(∆t)2 + (∆x)2

and on assumption the relation between O and Õ is linear we also have

∆2s̃ = −(∆t̃)2 + (∆x̃)2

∆s2 is a property only of two events and not of the observer. It is used to classify the

relation between events.

∆s2


> 0, Spacelike (spatial increments dominate)

< 0, Timelike (time increments dominate)

= 0, Lightlike (events lie on the same path)

(2.1)

For example, all world lines of physical objects move in a timelike direction. The constancy

of the speed of light implies that the intervals ∆s2 and ∆s̃2 between any two events as

computed by different observers satisfy the relation

∆s̃2 = ∆s2 (2.2)

which means the the interval is independent of the observer. [8]
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2.7 Hyperbolae Invariance

Next we can calibrate the Õ axes in the O space-time diagram with the equation

−t2 + x2 = a2, a ∈ R.

The hyperbola in the space-time diagram of O passes through events whose interval from

the origin is a2. By the invariance of the interval, the same events have interval a2 from

the origin in Õ which means that they lie on the curve

−t̄2 + x̃2 = a2, a ∈ R,

which is space-like separated from the origin. In a similar fashion, events on the curve

−t2 + x2 = −b2, b ∈ R

all have a time-like interval −b2 from the origin, and also lie on the curve

−t̄2 + x̃2 = −b2, b ∈ R.

The tangent to a hyperbola at any event is a line of simultaneity of the Lorentz frame

whose time axis joins the event to the origin. [8]
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(a) Invariant hyperbolae, for a > b.

(b) Using the hyperbolae through events A and C to calibrate the x̃
and t̃ axes.

Figure 5
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2.8 Time Dilation

From Figure 5b, it follows that when a clock moves on the t̃ axis and reaches event B, it

has a reading of t̃ = 1, with coordinate t = 1√
1−v2 in O. From the perspective of O the

clock appears to run slow by

(∆t)O =
(∆t̃)Õ√
1− v2

, (2.3)

where ∆t̃ is the time measured by a single clock which moves on a world line from the

origin to event B. ∆t is the difference in readings of two clocks at rest in O, where one

clock is on a world-line through the origin, and one is on a world-line passing through

event B. The proper time between events B and the origin is defined as the time ticked

off by a clock which passes through both events. The proper time is just the square root

of the negative of the interval. [8]

∆s2 = −∆t̃2 = −∆τ 2 (2.4)
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(a) O

(b) Õ

Figure 6: (a) A line of simultaneity in O is a tangent to the hyperbola at A. b The same tangent as
seen by Õ.
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2.9 Lorentz Contraction

Figure 7 shows the world path of a rod at rest in Õ. Its length in Õ is the square root of

∆s2
AC, while its length in O is the square root of ∆s2

AB. If event C has coordinates t̃ = 0,

x̃ = l then it has x coordinate in O

xC =
l√

1− v2
.

Since the x̃ axis is represented by the line t = vx,

tC =
vl√

1− v2
.

The line BC has the gradient
∆x

∆t
= v ⇒ xC − xB

tC − tB
and we want to find xB when tB = 0.

Thus

xB = xC − vtC =
l√

1− v2
− v2l√

1− v2
= l
√

1− v2 (2.5)

which we will hence define as the Lorentz Contraction. [8]

Figure 7: The proper length of AC is the length of the rod in its rest frame, while that of AB is its
length in O.
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2.10 The Lorentz Transformation

The Lorentz Transformation expresses the coordinates of Õ in terms of those of O. The

axes are oriented such that Õ moves with speed v on the positive x axis relative to O.

The lengths perpendicular to the x axis are the same regardless of measurement by O or

Õ. The general linear transformation is then

t̃ = αt+ βx ỹ = y

x̃ = γt+ σx z̃ = z

where α, β, γ, σ depend only on v. From Fig. (1.4) the t̃ and x̃ axes have equations

t̃x̃=0 : vt− x = 0,

x̃t̃=0 : vx− t = 0.

which implies
γ

σ
= −v, β

α
= −v

of which follows the transformation

t̃ = α(t− vx),

x̃ = σ(x− vt).

From Figure 3 we can also see that the two events (t̃ = 0, x̃ = a) and (t̃ = a, x̃ = 0) are

connected by a light ray which means that α = σ. From this we have

t̃ = α(t− vx),

x̃ = α(x− vt).

The invariance of the interval states that

−(∆t̃)2 + (∆x̃)2 = −(∆t)2 + (∆x)2 (2.6)
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which gives us

α = ± 1√
1− v2

of which we select the + sign so that when v = 0 we arrive at an identity rather than

inverting the coordinates.

The Lorentz Transformations are then

t̃ =
t√

1− v2
− vx√

1− v2
= γ(t− vx) = t cosh θ − x sinh θ,

x̃ = − vt√
1− v2

+
x√

1− v2
= γ(x− vt) = −t sinh θ + x cosh θ,

t = γ(t̃+ vx̃) = t̃ cosh θ + x̃ sinh θ,

x = γ(x̃+ vt̃) = t̃ sinh θ + x̃ cosh θ,

ũ =
u− v
1− uv

,

u =
ũ+ v

1 + ũv
,

v = tanh θ,

ỹ = y,

z̃ = z.

where γ =
1√

1− v2
= cosh θ and θ is shown in Figure 8.

(2.7)

which give the simplest relation between the coordinates of Õ and O. To use this however,

requires the spatial coordinates to be oriented in a specific way: Õ must move with speed

v in the positive x direction as seen by O, and the axes of Õ must be parallel to the

corresponding ones in O. [8]
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Figure 8: O’s rest frame. An illustration of all the steps combined so far. The lines of simultaneity are
shown for the alternate observer in both diagrams.
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Figure 9: O’s rest frame. An illustration of all the steps combined so far. The lines of simultaneity are
shown for the alternate observer in both diagrams.
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Part II

Special Relativity in a Periodic

Universe

3 Periodic Spacetime in 2D

3.1 Proper Time

The most important concept that needs to be understood is the idea of proper time.

Langevin in 1911 introduced the twin paradox as we know it today to discuss the

implications of special relativity. The differential ageing between the twins can be

demonstrated by calculating the proper time τ along two separate paths shown in Figure

10. For constant speeds the proper time of an observer is calculated by integrating

dτ =
dt

γ
. (3.1)

For an observer at rest we have

dτ = dt. (3.2)

As γ ≤ 1, the proper time measured along an inertial frame will be less than the measured

time in a rest frame, where it should be noted that rest frames are also inertial. This

inequality comes from the fact that proper time is a path dependant quantity. [27]

In subsection 3.2 we end up with

τOJill = 10 > τÕJack
=

10

γ

which demonstrates that the ÕJack’s inertial frame experiences less time than OJill’s rest

frame. Later we will use a more general proper time formula, concerning the change in

coordinates.
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3.2 The Classical Twin Paradox

The classic version of the Twin Paradox, in a universe with no imposed boundary

conditions, can easily be resolved in infinite flat space. It is important to understand the

nature of this fundamental paradox, as we move on to explore the effect of closed

universes on such problems. This problem is not so much of a paradox, but a

misunderstanding of the fundamental principles of relativity and prior assumption.

Consider then, OJill at rest and ÕJack travelling with velocity ṽ. ÕJack travels out to a

distant star, at which point he turns around, returning back to OJill. From her

perspective, she determines his elapsed time to be less than her own, and thus concludes

he returns home younger than her. Yet from ÕJack’s perspective he is the one at rest,

and she is moving away from him with velocity v! Thus from the same argument he also

concludes upon her ’return’ she is younger than he is!

The solution to this is best shown via diagrams to illustrate the rotation of time for an

inertial traveller. Because of the change in direction at the turnaround point, ÕJack has

changed velocity, so how he determines simultaneous time has in fact rotated with him.

In reality you would have to undergo an acceleration to change direction like this, and

this change in acceleration accounts for the apparent loss of time in the transition.

When firing your rockets to change direction his notion of time very quickly rotates

through the missing gap shown in Figure 10, which allows both observers to properly

account for the missing time.

It is important to note, that this fundamental solution, is the one to which we will

attempt to override when imposing boundary conditions.
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Figure 10: On both outward and inbound journeys OJill sees ÕJack’s time pass more slowly, illustrated
here measured as 3.2m. Upon the rotation at 5m he effectively skips over the 3.6m he lost in the described
paradox and thus they both concur from each others perspectives that ÕJack is in fact the younger twin
upon his return.

Figure 11: A more realistic, non-instantaneous, change of direction illustrates the rotation of time with
the traveller.
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3.3 Defining the Periodic Universe

Now we have established the classic problem, wherein one twin undergoes acceleration

and the other does not. We can consider alternative additions to this apparent paradox,

where we alter this system such that we can explore solutions to other ideas. Because

our solution to the previous problem was mainly that one twin undergoes a change of

acceleration, we can posit what happens when both undergo no change of acceleration

and devise a 2D topology in which this can be achieved.

Figure 12: The mapping from a sheet of paperM to a cylinder M̃ defined below.

If we define a two-dimensional universe in the shape of a cylinder, such that the distance

to traverse one period is L. and time extends infinitely up the cylinder where space

wraps around. Transforming our standard Minkowski spaceM from a sheet of paper to

a cylinder of Minkowski space M̃ (Figure 12) changes the topology. As this is a global

change, the local structure of spacetime remains the same. We can also state that this

cylinder is flat because it can be constructed from a single piece of paper, maintaining

its dimensions. As only the global topology changes in this construction, we can still

state that the geometry in the piece of paper is Lorentzian. Therefore Special
3Special Relativity only applies to space-time with zero curvature.
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Relativity3 still describes the physics governing this space-time.

The cylinder itself is formed via the rectangular region in the plane, given by the

primary range

x ∈ [0, L] and x̃ ∈
[
−vt̃,−vt̃+

L

γ

]
, (3.3)

due to both reference frames requiring the same restrictions to their respective domains.

Everything outside of this period is a repetition of each cycle, but as we will later

demonstrate, asymmetries can occur in moving frames and lead us to conclude that a

preferred rest frame exists in a periodic universe. [24, 26, 37]

Figure 13: Hand-coloured transparency presented by Minkowski in his 1908 Raum und Zeit lecture.
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3.4 The Idea of a Preferred Reference Frame

This section aims to generalize the unique consequences to Special Relativity when

periodic boundary conditions are imposed on spacetime, and will hint at resolutions to

later paradoxes due to the asymmetry of moving frames.

3.4.1 The Importance of Simultaneity

In Galilean relativity, identifying points simultaneously gives no preference for any frame,

and the idea of simultaneous time is intuitive. With Special Relativity if we identify4

points at the same time in OJill’s rest frame, then in ÕJack’s moving frame points are not

identified at the same time due to the simultaneity laws of our cylindrical universe M̃.

Theorem 1. In a periodic universe under the spacetime of Special Relativity imposes a

preferred reference frame, one which all events can be identified simultaneously.

Theorem 2. The events A
(

0
0

)
= B

(
0
L

)
are identified simultaneously in OJill’s frame.

[26]

3.4.2 Size of the Periodic Universe

A potential paradox arises when considering what happens to the universe from each

perspective due to length contraction. The size of our periodic universe is the length of

one cycle. This is L in OJill’s rest frame and γL in ÕJack’s moving frame. If ÕJack
5

decides to run from x̃ = 0 to x̃ = γL, laying out meter sticks end to end, he will find

himself back where he started. Consequently, the right end of the last meter stick will

be in contact with the left side first, due to the points being identified. As the sticks are

all at rest, the difference in identified times is not relevant. This suggests our preferred

frame is that in which the size of the universe is the smallest, since in ÕJack’s frame the

size is γL, and in OJill’s frame the size is L.

If we consider the opposite scenario from OJill’s frame, ÕJack would see each of her meter
4Identify means that they both represent the same point.
5He sees himself as the one at rest from his perspective even though he is our moving observer thus

the time difference is not relevant when considering his perspective.
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sticks length contracted by a factor of 1
γ
, suggesting he sees her universe to have a size of

L
γ
. As L

γ
< L, ÕJack concludes that a larger universe is the preferred frame.

The event B is not at the origin of ÕJack’s frame thus this apparent paradox is resolved

in favour of the original conclusion from this asymmetry (Figure 14). In summary then

we have that:

Theorem 3. One cycle of OJill’s frame at rest is smaller when observed from ÕJack’s

moving frame. Specifically γ2 is the number of cycles in OJill’s rest frame for each cycle

of ÕJack’s.

This has application in section 3.6 where we demonstrate firing lightrays around the

cylinder to the left and right from the origin as an inertial traveller. [26]

3.4.3 Clock Synchronization

When synchronizing clocks in ÕJack’s frame, the distance between them is a factor of

γL apart. Using the results from theorem 2, beginning in ÕJack’s frame he decides to

synchronise clocks to the right. After one full cycle a clock to the left of the origin will

read t̃ = 0 and be identified simultaneously to the right of the origin as t̃ = γvL, suggesting

discontinuity. This means that we again have a preferred reference frame, namely OJill’s.

This is shown in figure 14.

Theorem 4. A clock to the right of an observer will always be ahead by a factor of

t̃ = γvL from ÕJack’s inertial frame. OJill’s rest frame is the only frame which clocks can

be synchronized globally.
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3.5 Periodic Twin Paradox

Now we have generalised issues that might arise from restricting our domain

periodically, its time to come back to our original paradox and determine the

consequences.

OJill is at rest at the event A
(

0
0

)
in the cylinder, and ÕJack leaves from event A

(
0
0

)
moving to the right with velocity v, accelerating initially, but later switching his engines

off to undergo no more acceleration. He travels along a helix circling the cylinder, and

makes a full pass of the universe at t = L
v
recorded bu OJill.

When ÕJack and OJill compare clocks, OJill finds that the elapsed time6 for ÕJack’s

journey is t = L
v
, where from ÕJack’s perspective the elapsed time is less, and he

measures the journey as t̃ = L
γv
. The issue here is that both observers have travelled

with constant uniform velocity but are in disagreement on elapsed time.

The resolution then, is best solved like all relativistic paradoxes by considering the

space-time diagrams of both individual observers. Lorentz transformations act on the

whole of M usually, but when we apply the same reasoning to M̃ the transformations

only make sense locally. Without frames of reference where there are surfaces of

simultaneity this approach fails. In M̃ only OJill satisfies this condition of simultaneity.

When ÕJack gets to the end of a period L, the surface of simultaneity through the origin

does not match up. During the course of his adventure there are points connected by

timelike lines on this surface, which itself violate the concept of Lorentzian geometry7.

Unwrapping the cylinder (Figure 14) provides us with a clear representation of this

asymmetry, which ends up being a common theme for solving such paradoxes, and

provides us insight into how we can break the solution once more to create the next
6The elapsed proper time along any path as measured by a clock carried along the path is the Lorentzian

length of the path. [37]
7In Lorentzian geometry the direct (timelike) path between two points always takes more time than

any indirect (timelike) path. [37]
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paradox to solve. In some respects I feel like this is a proof by destruction as you will,

where you can remove a domino and show the domino effect still applies!

Graphically we can say that at Ã
(

0
0

)
we have one copy of ÕJack residing at home with

OJill, with another version of ÕJack at B
(
−γvL
γL

)
. From OJill’s perspective each version

of ÕJack leave simultaneously. But from ÕJack’s perspective departures happen

sequentially, illustrating the asymmetry. On each pass ÕJack’s clock will be slower and

slower when compared to OJill’s, and they will never have the opportunity to meet again

in space-time.

In conclusion, we note that it is not sufficient for two observers to agree on elapsed time,

and rely on the symmetry of motion. Worldlines must also be symmetric between

frames in space-time for agreement. Philosophically, this means that both ÕJack and

OJill have to perceive the universe in the same way to agree on elapsed time, which in

itself is quite the conceptual argument!

In Figure 14 we show the situation as translated from both perespectives. [24, 26, 37]
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(a) OJill’s rest frame.

(b) ÕJack’s inertial frame.

Figure 14: In OJill’s frame departures are simultaneous, but not in ÕJack’s.
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3.6 Shining a Torch in the Dark

Suppose that ÕJack, in his inertial spaceship sends light rays in both directions around

the universe. When does ÕJack, by his own clock, recapture these light rays? What can

ÕJack infer about his own velocity and period L from such measurements?

Previously, we demonstrated in section 3.4.3 and figure 14, that ÕJack’s inertial frame is

asymmetric due to his inability to synchronise clocks. In OJill’s frame, light rays emitted

in opposite directions return to the same point at the same time after each cycle. Light

rays recaptured in ÕJack’s frame to the right take τ̃+ = γL
1+v

to make one cycle, yet rays

to the left take τ̃− = γL
1−v as described in Peters paper [26]. If we take the ratio of these

two measurements to eliminate L we arrive at

τ̃−
τ̃+

=
γL

1 + v

/
γL

1− v

=
1− v
1 + v

(3.4)

where v is shown as ṽ in Figure 15b. We aim to reproduce this ratio in the preferred

frame of OJill, and further demonstrate the ability to infer L and v from this.

As the difference of times depends on two variables v and L, he can attempt to draw

conclusions on how many cycles he has previously made around the universe, provided

he can accurately measure his velocity and elapsed time. However, we have previously

clarified that he is unable to synchronise his clocks accurately, and this discontinuity

prevents him from doing so.

We therefore consider OJill’s frame to simplify our calculations, and arrive at formulas

for the proper time from the left and right incident rays meeting with ÕJack shown in

Figure 16. ÕJack’s worldline is represented by the line

x = ṽt. (3.5)

34



The worldlines for the two lightrays are represented by c+

x = t− L (3.6)

and c−

x = −t+ L. (3.7)

Thus the coordinates of event A incident with lightray c− can be found via equating

ṽt = −t+ L

t(ṽ + 1) = L

t =
L

ṽ + 1

x = − L

ṽ + 1
+ L

=
ṽL

ṽ + 1
.

Event A is then represented by the coordinate

A

 L

ṽ + 1
ṽL

ṽ + 1

 . (3.8)

The coordinates of event B incident with lightray c+ can be found via equating

ṽt = t− L

t(ṽ − 1) = −L

t =
L

1− ṽ

x =
L

1− ṽ
− L

=
ṽL

1− ṽ
.
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Event B is then represented by the coordinate

B


L

1− ṽ
ṽL

1− ṽ

 . (3.9)

The proper time measured by OJill is defined as

(∆τ)2 = (∆t)2 − (∆x)2 , (3.10)

therefore the proper time of the c+ lightray recaptured in Figure 16 at event B is

(∆τB,+)2 =

(
L

1− ṽ

)2

−
(

ṽL

1− ṽ

)2

=
L2

(1− ṽ)2
− ṽ2L2

(1− ṽ)2

=
L2(1− ṽ2

(1− ṽ2)

∴ τB,+ =
L
√

1− ṽ2

1− ṽ
,

(3.11)

and the proper time of the c− lightray recaptured in Figure 16 at event A is

(∆τA,−)2 =

(
L

ṽ + 1

)2

−
(

ṽL

ṽ + 1

)2

=
L2

(ṽ + 1)2
− ṽL2

(ṽ + 1)2

=
L2(1− ṽ2)

(ṽ + 1)2

∴ τA,− =
L
√

1− ṽ2

1 + ṽ
.

(3.12)

We have two formulas relating ṽ and L to which ÕJack can begin to understand his

period and velocity in the universe. Event B represents the recaptured c+ lightray with

proper time τB,+ = L
γ(1−ṽ)

shown in equation (3.11). Event A represents the recaptured

c− lightray with proper time τA,− = L
γ(1+ṽ)

shown in equation (3.12).
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If we define the ratio between the two measured proper times to be

τA,−
τB,+

= τ̂ , (3.13)

we arrive at

τ̂ =
L
√

1− ṽ2

1 + ṽ

/
L
√

1− ṽ2

1− ṽ

=
1− ṽ
1 + ṽ

.

(3.14)

Rearranging to make the velocity ṽ the subject gives us

(ṽ + 1)τ̂ = 1− ṽ

ṽ(τ̂ + 1) = 1− τ̂

ṽ =
1− τ̂
1 + τ̂

.

(3.15)

Substituting this expression into τA,− we can also rearrange to make L the subject. From

equation (3.11) and (3.12) we have

τA,− =
L
√

1− ṽ2

1 + ṽ
,

τB,+ =
L
√

1− ṽ2

1− ṽ

which then follows that

τA,−τB,+ =

(
L
√

1− ṽ2

1 + ṽ

)(
L
√

1− ṽ2

1− ṽ

)
=
L2(1− ṽ2)

(1− ṽ2)

∴ L =
√
τA,−τB,+.

(3.16)

Upon recapturing both lightrays c+ and c− at events B and A respectively, we arrive at the

conclusion that if the adventurer was to make a note of the proper times at both events,

he would be able to infer his velocity and period from such a journey. The important
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results from this analysis are then the formulas

τ̂ =
τA,−
τB,+

L =
√

(τA,−)(τB,+)

ṽ =
1− τ̂
1 + τ̂

=
(τB,+)− (τA,−)

(τB,+) + (τA,−)
.

(3.17)
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(a) OJill’s rest frame.

(b) ÕJack’s inertial frame.

Figure 15: (a) OJill sees ÕJack’s emitted lightrays depart simultaneously and is able to synchronise
clocks to her left and right. (b) ÕJack emits lightrays initially and upon returning each cycle and finds
himself unable to synchronise his clocks when comparing an emitted beam around the left of the cylinder
to the right.
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Figure 16: The preferred observer OJill receives light signals at the same point in spacetime. She notes
that the light ray to the left collides with ÕJack before the light ray fired to the right. Due to the existence
of this preferred frame, we choose to do calculations here as the result is the same in both frames. The
two events displayed in black are the incident rays which meet ÕJack first respectively. From this we next
show how upon comparison of these two measurements of proper time, he finds equations to determine
his period L and velocity v.
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3.7 Both Twins as Inertial Adventurers

Suppose that O′Jill climbs in a spaceship, accelerates, and then turns her engines off. If

O′′Jack and O′Jill have different velocities, they pass each other from time to time. What

can O′′Jack and O′Jill infer about their velocities and period L from their clock readings as

the time passes?

As O′Jill has remained stationary for all other scenarios, in a rush to adventure, she sets

off at a velocity close to the speed of light. O′′Jack, in his exhaustion from earlier travels,

slows down to have a look what she is up to, shown in Figure 18 from the rest frame of

the universe we define as OUniverse.

Firstly we aim to find the coordinates of A and B as before in Figure 18. The worldlines

for coordinate A consist of O′′Jack

x = −v′′t (3.18)

and O′Jill

x = v′t− L. (3.19)

We then find the coordinates in the usual way

−v′′t = v′t− L

L = v′t+ v′′t

L = t(v′ + v′′)

t =
L

v′ + v′′

x = − v′′L

v′ + v′′
,

which then follows that event A has coordinates

A


L

v′ + v′′

−v′′L
v′ + v′′

 . (3.20)
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Next, coordinates of event B consist of the worldlines of O′′Jack

x = −v′′t+ L (3.21)

and O′Jill

x = v′t− L (3.22)

where we arrive through the same method as before

−v′′t+ L = v′t− L

2L = v′t+ v′′t

2L = t(v′ + v′′)

t =
2L

v′ + v′′

x = − 2v′′L

v′ + v′′
+ L

x =
L(v′ − v′′)
v′ + v′′

to find coordinate B to be

B


2L

v′ + v′′

L(v′ − v′′)
v′ + v′′

 . (3.23)

The proper time that O′′Jack measures between event A (Equation 3.21) and
(

0
0

)
is

(∆τA,Jack)2 =

(
L

v′ + v′′

)2

−
(
− v′′L

v′ + v′′

)2

=
L2

(v′ + v′′)2
− (v′′L)2

(v′ + v′′)2

=
L2 (1− (v′′)2)

(v′ + v′′)2

∴ τA,Jack =
L
√

1− (v′′)2

v′ + v′′

(3.24)

42



which represents the proper time between his two successive meetings with O′Jill. The

proper time that O′Jill measures between event A (Equation 3.21) and
(

0
−L
)
is

(∆τA,Jill)
2 =

(
L

v′ + v′′

)2

−
(
− v′′L

v′ + v′′
+ L

)2

=
L2 (1− (v′)2)

(v′ + v′′)2

∴ τA,Jill =
L
√

1− (v′)2

v′ + v′′

(3.25)

which represents the proper time between her two successive meetings with O′′Jack. The

Lorentz transformations we derived in the equation set (2.7) includes the velocity addition

formulas
∆x′

∆t′
= ũ =

u− v
1− uv

(3.26)

and
∆x

∆t
= u =

ũ+ v

1 + ũv
, (3.27)

which we can use to find another relationship to describe the velocities of O′′Jack and O′Jill

from the reference frame of the OUniverse. O′′Jack’s velocity is −v′′ and O′Jill’s velocity is v′,

thus the velocity addition formula gives us

v =
v′ + v′′

1 + v′v′′
. (3.28)

We then have the velocity v, which can be measured with a standard issue traffic control

speed gun, and the two proper times as measured byO′′Jack andO′Jill. Our three measurable

quantities as equations to solve then are

v =
v′ + v′′

1 + v′v′′

τA,Jill =
L
√

1− (v′)2

v′ + v′′

τA,Jack =
L
√

1− (v′′)2

v′ + v′′
.

(3.29)
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The matlab code in appendix C finds that the solutions are

v′ =
τA,Jack + τA,Jill

√
1− v2

vτA,Jack

v′′ =
τA,Jill + τA,Jack

√
1− v2

vτA,Jill

L =

√
v2τ 2

A,Jill − τ 2
A,Jill + v2τ 2

A,Jack − τ 2
A,Jack − 2τA,JackτA,Jill

√
1− v2

1− v2
.

(3.30)
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(a) OJill’s inertial frame.

(b) ÕJack’s inertial frame.

Figure 17: In compliment to Figure 19 this shows the worldlines of(a) OJill’s inertial frame and (b)
ÕJack’s inertial frame.
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Figure 18: The third scenario shown here is from the rest frame of universe.
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Figure 19: Shown from all 3 perspectives the velocities v indicated in the universe rest frame exhibit a
special "neutral" velocity such that both observers move away at the same velocity.
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4 Periodic Spacetime in Extra Dimensions

4.1 Overview of Topology

As stated in the introduction, topology is an extension of geometry which describes

space, illustrating its features, dimensions, connectivity, orientability, infiniteness or

finiteness, without measurement. Continuity is important in such a space, and can be

visioned such that space can stretch without tearing and ends be glued together. Space

can be stretched, crushed or kneaded in any way without changing its topology. We are

primarily concerned with space of zero curvature so that special relativity still applies.

Our spacetime occupies the infinite Euclidean plane and four others can be constructed

from this.

Figure 20: The four multiply connected topologies of the 2-dimensional Euclidean plane. [25]
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Figure 20 shows how we can begin with a sheet of paper8 and form a cylinder via gluing

two sides of an infinite strip together, and a Möbius band by twisting an edge 180o

before the same gluing process. The torus is then created by taking the other parallel

sides and gluing those together, and the Klein bottle by twisting a pair of edges before

gluing. The two that we will explore will be the (2 + 1)D torus and the (3 + 1)D

hypertorus.

4.2 Constructing the 3D Torus

The fundamental domain of the Torus is the same sheet of paper previously used to

construct the cylinder, which for clarity will now carry a subscript M̃C. We can generate

the periodic space in the same way, and illustrate it by unravelling the Torus into the

Euclidean plane R2, illustrated below. This mapping can be considered as

(
t
x
y

)
7→

(
t

x+ Lx
y + Ly

)
,

where previously we dealt with the spacetime
(
t
x

)
of the cylinder M̃C. As an abbreviation,

the torus in Minkowski spacetime will be defined as M̃T.

4.3 The Periodic Twin Paradox in a 3D Torus

As before, in M̃T, ÕJack can remain in an inertial reference frame, provided he does not

change direction, and returns periodically back to OJill. We have as before a similar

scenario, where both will believe that the other is younger upon each pass. The

resolution is still as before, due to the asymmetry between the spacetime paths of

events, which in the standard paradox is caused by a change of acceleration. In a

compact spacetime this asymmetry arises from multiply connected topology, and

introduces the idea of preferred reference frames. The subtle difference however,

between M̃C and M̃T, is that the torus is closed.

8A sheet of paper is merely a standard Euclidean plane in context.
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Figure 21: The paths 1, 2 and 3 all connect to OJill. The closed curve 1 can be shrunk to a point, yet
2 and 3 cannot because they complete a cycle of spacetime and the asymmetry discovered in M̃C for
simultaneous departure presents itself again.

The classical twin paradox is illustrated via scenerio 1. As his worldline involved an

acceleration he is in fact younger than OJill. We can demonstrate the asymmetry

discovered previously in this case by drawing closed curves on a surface. The closed

curve can be tightened and reduced to a point without hitting an obstacle, or it cannot

be tightened because it encounters a hole, such as M̃C and M̃T. The prior is satisfied

via the Euclidean plane, where surfaces are simply connected, and the latter case is a

surface defined as being a multiply connected topology.
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Two closed curves are homotopic if they can be repeatedly deformed into each other

[25]. With this in mind we can define other classes of topologically equivalent closed

curves. In Figure 22 the trajectories of both OJill and ÕJack’s first scenario are

homotopic to
(

0
0

)
, due to both trajectories being capable of deformation to a point. As

before, they are asymmetric as only OJill stays in an inertial reference frame, where

scenario 1 ÕJack undergoes a change of acceleration. Therefore among all homotopic

curves from 0 to 0′, we have but one which corresponds with an inertial observer,

namely OJill, and she experiences more time than ÕJack as before.

Scenario 2 ÕJack travels once along the “equator” of the torus, and scenario 3 ÕJack

travels once around the circumference. Topologically, these journeys are not homotopic,

as they can be characterised by a winding index. Our cylinder M̃C has a winding index

such that each period is counted as an integer upon each iteration. Naturally, from the

previous construction, our torus M̃T has a winding index consisting of
(
q
p

)
, where

q, p ∈ N. q represents the periodic count of the “equator”, and p represents the periodic

count of the circumference. Therefore OJill and scenario 1 ÕJack share the same winding

index
(

0
0

)
, and scenarios 2 and 3 of ÕJack have respective winding indexes of

(
1
0

)
and(

0
1

)
. We have to conclude then that our asymmetry lies in that fact that the journeys of

OJill and scenarios 2 and 3 of ÕJack belong to different homotopy classes. Thus the

classical solution is the same, where OJill remains older than ÕJack.

Generally then, for observers to record proper times and agree, we require more than

just observers to be in inertial reference frames. Their worldlines must share the same

homotopy class to agree on proper times. Regardless of any inertial observer, the oldest

will always be the one whose worldline has a
(

0
0

)
homotopy class. This further lends to

the idea that preferred reference frames occur under such multi-connected compact

spatial topology, such as OJill’s frame in our example. This change of topology also

infers a preferred homotopy class! [24, 25, 37]
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Figure 22: As before OJill stays at home and ÕJack makes 3 separate journeys in different scenarios
here illustrated on one diagram. In scenario 1 he leaves home at t = 0 in his rocket, then turns back and
returns home to OJill. Scenarios 2 and 3 both involve travel from t = 0 to the respective points shown
with non-accelerated worldlines. 2 around the circumference, and 3 along the “equator” of the torus.

4.4 Constructing the 4D Hypertorus

Here we will determine an alternate approach using the Lorentz transformations to arrive

at the same conclusions found in M̃C and M̃T. Previously, we have dealt with the

spacetime

(
t
x
y

)
, and we can of course generalise this to extra dimensions

xµ =

tx
y
z

 ,

where the flat spacetime metric is

ds2 = gµvdxµdxv with gµv = diag(−1, 1, 1, 1). (4.1)

This represents the manifold of special relativity whereR⊗M. R represents the direction

of time and M = R3 is a flat 3D infinite space. We can then define special relativity

in a compact 3-manifoldMC = R⊗ M
Γ
, where the group Γ is the set of instructions for
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introducing compact space. A period L in this context is described by the holonomies,

φ ∈ Γ, which maps the end point of one cycle to the origin. A periodic orbit is such

that xend = φxstart where we define φ to be the composite word φ = Πn
i φki . Next, if we

embed our (3 + 1)D spacetime to a (4 + 1)D spacetime, we can introduce a fixed spatial

coordinate q9 of order unity to achieve

xα =


t
x
y
z
q

 .

As defined in section 2.5, Greek indices will be in the set 0, 1, 2, 3 and Latin in 0, 1, 2, 3, 4.

To demonstrate a mapping from


t
x
y
z
q

 7→


t
x+ Lx
y + Ly
z + Lz
q

 .

to map the end-point to the origin we can introduce 5× 5 matrices as the elements of Γ,

which generate this transition

Tx =


1 0 0 0 0
0 1 0 0 Lx
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 , Ty =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 Ly
0 0 0 1 0
0 0 0 0 1

 , Tz =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 Lz
0 0 0 0 1

 .

This generalises to

xα = φabx
b for each φ ∈ Γ. (4.2)

This hypertorus is constructed in a similar fashion to our 2D cylinder M̃ by gluing

opposite faces of the parallelepiped and has a periodic cycle of

xend = TyT
2
xxstart.

[25, 28, 35]
9Embedding 3D spacetime into 4D allows us to write translations as matrices.

53



4.5 The Periodic Twin Paradox in a 4D Hypertorus

Suppose that we have the same situation as described from before in 2D, and apply to

our newly defined general coordinates. As OJill is at rest the holonomies result in φ = 1.

ÕJack, in his inertial frame, exhibits a coordinate system defined by x̃ = Λx, where Λ is

the Lorentz transformation

Λ =


γ −γvx −γvy −γvz 0

−γvx 1 + (γ−1)v2x
v2

(γ−1)vxvy
v2

(γ−1)vxvz
v2

0

−γvy (γ−1)vxvy
v2

1 +
(γ−1)v2y

v2
(γ−1)vyvz

v2
0

−γvz (γ−1)vxvz
v2

(γ−1)vyvz
v2

1 + (γ−1)v2z
v2

0
0 0 0 0 1



and vi are the velocities of boosts in

xy
z
q

, v2 =
∑

i v
2
i , and γ = 1√

1−v2 .

OJill sees ÕJack travel a distance d, and during one cycle she sees an elapsed time of

∆t =
d

v
.

She then determines ÕJack’s clock to run slower by

∆t̃ =
∆t

γ

and believes that his clock will experience

∆t̃ =
d

γv
. (4.3)

ÕJack is therefore younger upon completing one cycle and returning to OJill. As ÕJack

agrees that he is younger than OJill there is no paradox. According to ÕJack, both

spacetime points can be identified, yet this results in difficulties to synchronise clocks.

As ÕJack must remain on a periodic orbit to remain inertial, we can define his journey
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for one cycle via the mapping from equation 4.2

x̃ = Λx 7→ Λφx.

The asymmetry here is given by

δt̃ = −γvi(xi − φjixj)

where i = 1, 2, 3, 4 and vi =

vxvy
vz
0

. ÕJack travels a distance measured by OJill of

d =

√
(xi − φjixj)(xi − φjixj) =

√
dvi
v

(xi − φjixj)

where xi =

xy
z
q

, and shows ÕJack’s clocks to be desynchronised by

δt̃ = −γvd.

ÕJack sees OJill leave him in the opposite direction and return, covering a distance of γd,

and discovers that his clock reads

∆t̃ =
d

γv
= equation (4.3) (4.4)

in agreement with OJill’s clock reading before. This generalises the works of

[10, 11, 25, 26, 28, 35].
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5 Cosmological Spacetimes

The Cosmological Principle states that the universe is, on average, isotropic (the same

in all dimensions) and homogeneous (the same at all points). Our location is not special,

nor does one location take preference over another.

As discussed before, compact topology suggests that there is a preferred reference frame,

so in a cosmological context this also suggests that there is a preferred galaxy to take

measurements from. Such a universe is the one which is at the centre of everything!

Consequently, the ability to synchronize clocks is reserved only for this preferred galaxy,

one in which you can observe the smallest volume of the Universe. This clearly violates

the cosmological principle and further lends to that fact that relativity is not valid

globally in such compact spacetimes. [12]

5.1 The Topology of the Universe

A universe with a flat or open geometry is assumed to be infinite, yet as the speed of

light is finite this is difficult to prove. We can consider instead that the universe has

non-trivial topology. Geometry in our context describes the local shape of spacetime,

yet topology describes these globally. General Relativity tells us that the properties of

matter determine geometry, but does not infer anything of topology.

If you take a sheet of paper and join two sides to form a cylinder, as we did with our

mapping from M 7→ M̃ before, we have imposed boundary conditions such that an

inertial traveller can adventure forever. However, displacement is finite due to the

periodicity. If we then bend this cylinder to join its two ends together, we end up with a

torus which is still a closed, finite 2D surface. This demonstrates how a torus can be

constructed with a flat geometry. The surface may show signs of curvature but this is

just a global representation of how it looks in 3D space. Locally it is impossible to

distinguish between an infinite plane or the surface of a torus.
10A flat geometry such that the volume is finite and an inertial traveller would return to the starting

point in a finite time.
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The possibility then, is that our Universe could have a non-trivial topology10, yet if the

scale of this is much larger than the observable Universe, we would have no detection

method to determine such. If the topology was smaller we would essentially see the

periodicity occur, and evidence of a cycle would allow us to observe the beginning at the

cosmological horizon. As we have no evidence of such topology observationally, the only

scenarios left are that either this periodicity occurs beyond our limits of observation, or

that we live in a place with standard topology. [12]

5.2 The Periodic Universe

From defining the homotopy class in section 4.3, we discovered topological invariance

associated with each observers worldlines, which explained the asymmetry between

inertial reference frames. This means that the rules of special relativity are being

violated somehow. If we consider two assumptions we must abide by:

• Under special relativity two reference frames are invariant if the Lorentz

transformation between them is also invariant.

• The Poincaré group contains the set of all Lorentz transformations

consisting of a 10D group combining homogeneous Lorentz

transformations consisting of translations, rotations and boosts.

The equivalence lost between inertial reference frames arises when introducing compact

topology which fundamentally violates the Poincaré group.

However, Einstein’s field equations in general relativity involve curved spacetimes with

no specific symmetry, and our reasoning involved Lorentzian sections of spacetime. It is

known that all exact solutions admit symmetry groups [6].

In cosmology, the big bang model, as modelled by the Friedmann equation

H2 =

(
ȧ

a

)2

=
8πG

3
ρ− kc2

a2
+

Λc2

3
, (5.1)
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with the metric

ds2 = −c2dt2 + a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θ dφ2)

]
, (5.2)

assumes the universe to be homogeneous and isotropic. Geometrically, this implies that

spacelike slices have constant curvature. About each point, space is spherically

symmetric. Group theory would describe this as spacetime invariance under a 6D

isometry group. The curvature k of space can either be 0, positive or negative,

corresponding to Euclidean space R3, the sphere S3 or the hyperbolic H3. Introducing

compact space to these by gluing points together, lowers the dimension of their isometry

group, yet the 3D homogeneity group is unaffected. This means that the isometry group

is broken globally, meaning that preferred locations and directions exist such that the

universe appears different.

We have to conclude that, in a Friedmann described universe, both the expansion of

the universe, and the existence of multiply connected topology for constant time

hypersurfaces, break Poincaré invariance. This singles out the same preferred inertial

observer as before, who will age more quickly than her twin, comoving with the cosmic

fluid.[6, 25, 31]

5.3 Compact Time

Previously, we have only considered implications of compactifying space, yet what can

we say about imposing the same conditions on time? Any meaningful result would have

to ensure causality violation did not occur along closed timelike curves. The scale of

compact time chosen would be of interest here, and in terms of biological timescales, the

scale of time would have to be much larger or shorter than the biological timescale,

otherwise no new life could be created as it would have to somehow grow young again.

Cosmologically, the big bang could happen, followed by a crunch, only to repeat its
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cycle again ad infinitum [14]. What has happened, happening and yet to happen, will in

turn happen again, lending itself to a cyclic time state. Such boundaries define fate to

be a fundamental idea of physics in such a universe, yet as we understand from quantum

gravity, upon each reset no two iterations would be the same. The initial conditions are

slightly altered upon each iteration, allowing new galaxies, stars and life to exist.

If an omnipotent observer was the creator of it all, perhaps this is the variation by

design to spare himself the relentless cosmic boredom of watching what has happened

before, happen again. The nature of time is a concept elusive to define philosophically,

and as we have shown is complicated to define scientifically. Introducing the idea that it

could reset itself further illustrates its inescapable strangeness.
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Part III

Resolving the Asymmetry

6 Conclusion

6.1 Why Twins?

Twin duality is ubiquitous throughout history, and such ideas stand the test of time as

they invoke our primal nature. If we consider the twin paradox itself out of the context

of special relativity, we in essence have a fable much like the stories of old. When we say

twins in our scientific scenario, it is there simply to define them as both being the same

age for experimental purposes. Yet the concept of twins can be that of a good versus

evil, and as such pops up all over throughout mythology. Conceptually, the argument

arises to that of a disagreement in perspective, which is another philosophical opinion

based argument that is difficult to resolve.

For example, Romulus and Remus arrived in the area of seven hills, yet disagreed upon

which hill to build. Romulus preferred the Palatine yet Remus preferred the Aventine.

Ultimately this dispute led to Romulus killing Remus and then founded the city of

Rome.

Or we could consider the sun god Ra and the god of chaos Apophis. Apophis was said

to lie below the horizon line, waiting to devour Ra as Ra descended into the underworld.

As he swallowed Ra, the sun would set, and upon swallowing led to nighttime.

Eventually he would spit Ra back out, however and cause the sun to rise once more.

However, regardless of the story the theme is similar. An inability to agree from

different perspectives, and a refusal to accept the underlying truth of reality which

breaks our intuitive understanding. The twin paradox is exactly this, a paradox only

until the subtleties relativity is truly understood.

60



6.2 Asymmetry and Preferred Frames

The initial paradox was solved simply from a lack of considering ÕJack’s change of

direction, and thus occupying a non-inertial reference frame during this transition.

What if we could create a universe such that an adventurer could maintain constant

acceleration indefinitely? To which we defined the cylinder, and saw it too had a

resolution but a much more subtle one. Introducing a compact topology had its own

consequences to the paradox, revealed as an asymmetry between frames. Even before

illustrating the situation clearly via Minkowski diagrams, the mapping from

(
t
x

)
7→
(

t
x+ L

)

results in a translation to another inertial observer

(
t̃
x̃

)
7→
(
t̃− vγL
x̃+ γL

)
,

and clearly shows that Õ has a time difference for departure upon each periodic interval.

Whilst this provides us with a resolution to the paradox, what else can we draw from

such a conclusion? As O is not hindered by this, we can conclude that calculations

taken in this frame will be simpler to derive, leading us to the idea of a preferred frame

of reference. Our most significant result from imposing periodic boundary conditions

then, is the existence of this preferred frame.

The scenario we introduced in Shining a Torch in the Dark (Section 3.6), showed how we

could arrive at formulas for ÕJack’s velocity ṽ and period L in OJill’s frame. This means

that regardless of his place in the universe she is able to work out how many times he

has traversed compact spacetime simply from comparing light rays incident from both

directions around the cylinder. As we previously clarified, due to the existence of a

preferred frame, we chose to do our calculations in OJill’s frame to demonstrate we arrive

at the same conclusions as Peters [26] considers in his S ′ frame, corresponding to ÕJack’s
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frame in our example. The important results from this analysis were the formulas

τ̂ =
τA,−
τB,+

L =
√

(τA,−)(τB,+)

ṽ =
1− τ̂
1 + τ̂

=
(τB,+)− (τA,−)

(τB,+) + (τA,−)

(6.1)

which are verified in appendix B. This meant that, to determine ÕJack’s L and ṽ (Equation

6.1), OJill only needs to determine the two respective proper times τA,− and τB,+. ÕJack

from his frame however, is unable to accurately synchronise clocks in the same fashion

and notes the discrepancy demonstrated in Peters paper [26] as

τB,+ − τA,− = 2γṽL, (6.2)

demonstrated graphically in Figure 15b.

The second scenario, Both Twins as Inertial Adventurers (Section 3.7), used a third

inertial reference frame of a point in OUniverse
11 to arrive at similar formulas to before in

terms of the proper times measured, depending on L, v′ and v′′. To arrive at this O′′Jack

fired a speed gun at O′Jill to determine her speed which is defined as a measurable

quantity v. The three measurable quantities as equations to solve were

v =
v′ + v′′

1 + v′v′′

τA,Jill =
L
√

1− (v′)2

v′ + v′′

τA,Jack =
L
√

1− (v′′)2

v′ + v′′

(6.3)

11Ultimately just any arbitrary point in the universe at rest.
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and the matlab code in appendix C found the solutions to be

v′ =
τA,Jack + τA,Jill

√
1− v2

vτA,Jack

v′′ =
τA,Jill + τA,Jack

√
1− v2

vτA,Jill

L =

√
v2τ 2

A,Jill − τ 2
A,Jill + v2τ 2

A,Jack − τ 2
A,Jack − 2τA,JackτA,Jill

√
1− v2

1− v2
.

(6.4)

This tells us that we can determine v′ v′′ and L from our three measurable quantities

alone.

To further illustrate the asymmetry and preferred frame results, we then constructed a

torus from the same universal covering space (the sheet of paper) as before. Here we

took an alternate approach and investigated a resolution via topology considerations, in

which homotopy classes played a fundamental role. This allowed us to truly consider all

possibilities an adventurer could make in such a spacetime, and revealed consequences

to us which arose naturally in the transition to compactify space. We showed that each

journey could be summarised by its trajectory around the universe, and that for

asymmetry to not occur the respective homotopy classes for such had to be in

agreement.

Lastly, we considered a comparison with our own topology and cosmology, to draw

conclusions on the feasibility of such spacetimes constructed in M̃C and M̃T . Relativity

tells us information about what happens locally but nothing upon the global scale. If

the topology of our universe is in fact non-trivial, the examples described in this paper

could be a reality for us, and all the implications that follow. We could one day journey

to distant stars, and see even further away a reflection of our home.

The visible universe is 98 billion light years across, yet only 13.8 billion years old [12].

Nothing travels faster than the speed of light. It would take you longer than the

universe has existed, to reach most points in the visible universe, even if you could travel

at near light speed. Yet even worse, this assumes that the universe is static, which its
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not. The universe isn’t only expanding, the rate of expansion is accelerating. The size of

the greater universe is estimated to be 250 times larger than the visible universe and 7

trillion light years across. The overwhelming majority of the universe can never be seen

because it’s growing faster than light can travel across it. Eventually all of the visible

universe will be so far away that it’s light will never reach us and the visible universe

will be limited to our local cluster of galaxies.

So if we consider the same evolution over time for the periodic universe, accelerated

expansion would suggest an overlap of objects completing cycles ever faster and faster.

If our universe is in fact periodic, we would most certainly see evidence of this strange

behaviour occurring. Expansion in this context is essentially the same however, as we

have shown that the size of the universe increases in relation to velocity. Perhaps then,

due to this similarity, it could be possible that in fact its impossible to ascertain what

kind of spacetime we truly occupy!

6.3 Further Reading

For calculations involving acceleration to illustrate where asymmetry in non-inertial

reference frames lie, Gamboa’s [36] paper takes the twin paradox in this direction and

argues that

“One should be careful in invoking different versions of the twin paradox to

explain a point about the “original” version: in the end, each version is

a different problem, and the explanation of one obviously cannot carry to

another.”

I think in all cases a well defined problem in physics is important otherwise there is a

loss in clarity and a resolution is vague at best.

Grøn [29] considers a cosmological spacetime, expanding on the twin paradox in

Schwarzchild spacetime. Previously under circular motion they showed that the twin

with a non-vanishing 4-acceleration is older than his brother at the reunion and argued

that in spaces that are asymptotically Minkowskian there exists an absolute standard of
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rest determining which twin is oldest at the reunion. Which in our case is the idea of the

preferred reference frame. He then shows that in the case of vertical motion in

Schwarzchild spacetime the opposite is true. The twin with a non-vanishing

4-acceleration is younger. It would be interesting to see the effects of introducing a

compact topology to his investigation, and is a potential direction my previous work

could move into.

Blau [33] also considers the idea of introducing compact topology to avoid a change of

acceleration to return home. His paper considers superluminal speeds on the same

cylinder we constructed and notes the importance of how you define the transition

points between complete cycles of the universe. He states that

“Many who have studied special relativity have pondered the question, can

a person travelling faster than light take a round-trip journey and return

earlier than they set off? The answer could go either way, but for any

given journey all observers will agree on whether the return was earlier or

later than the departure. If space is circular rather than linear, however,

a superluminal traveler can return home without changing direction, and

the issue of whether the return is unambiguously later or earlier than the

departure needs to be reconsidered.”

I think it would be interesting to consider superluminal speeds in our two scenarios

Shining a Torch in the Dark (Section 3.6) and Both Twins as Inertial Adventurers

(Section 3.7). While the preferred reference frame will certainly play an important role

in calculating the trivial time transition, interesting effects may occur in the Õ frame.

Other considerations include [15, 16, 17, 31, 32, 34], all of which are variations on the

theme of compact spacetime and the twin paradox.
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Part IV

Appendix

A Definitions

A Minkowski spacetime isometry has the property that the interval between events

is left invariant. A time or space reversal (a reflection) is also an isometry of this group.

In Minkowski space (i.e. ignoring the effects of gravity), there are ten degrees of

freedom of the isometries, which may be thought of as translation through time or

space (four degrees, one per dimension); reflection through a plane (three degrees, the

freedom in orientation of this plane); or a boost in any of the three spatial directions

(three degrees). Composition of transformations is the operator of the Poincaré

group, with proper rotations being produced as the composition of an even number of

reflections. In classical physics, the Galilean group is a comparable ten-parameter

group that acts on absolute time and space. Instead of boosts, it features shear

mappings to relate co-moving frames of reference. [7]

Topology is concerned with the properties of space that are preserved under continuous

deformations.

Compactness is a property that generalizes the notion of a subset of Euclidean space

being closed (that is, containing all its limit points) and bounded (that is, having all

its points lie within some fixed distance of each other).

A manifold is a topological space that locally resembles Euclidean space near each

point.

In differential geometry, the holonomy of a connection on a smooth manifold is a

general geometrical consequence of the curvature of the connection measuring the extent

to which parallel transport around closed loops fails to preserve the geometrical data

being transported.

Two loops are homotopic if they can be continuously deformed into one another.

Homotopy allows us to define classes of topologically equivalent loops. [10, 11]
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B Matlab Code for the System in Section 3.6

1 %% Variables

2 % L = x

3 % vtilde = y

4 %% Measurables

5 % tau(A−) = A

6 % tau(B+) = B

7 %% Solver

8 syms x y A B

9 % Assumptions

10 assume(x,'clear')

11 assume(y,'clear')

12 assume(A,'clear')

13 assume(B,'clear')

14 assume(x>0 & A>0 & B>0 & −1<y<1)

15 % System To Solve

16 eqn1 = x*((1−y^(2))^(1/2))/(1+y) − A == 0;

17 eqn2 = x*((1−y^(2))^(1/2))/(1−y) − B == 0;

18 % Solutions

19 [solx,soly] = solve(eqn1,eqn2);

20 X = simplify(solx, 'IgnoreAnalyticConstraints', true, 'Steps', 100)

21 Y = simplify(soly, 'IgnoreAnalyticConstraints', true, 'Steps', 100)

22 % Output

23 X =

24 (A*B)^(1/2)

25 Y =

26 −(A − B)/(A + B)
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C Matlab Code for the System in Section 3.7

1 %% Variables

2 % v' = x

3 % v'' = y

4 % L = z

5 %% Measurables

6 % v = A

7 % tau(Jill) = B

8 % tau(Jack) = C

9 %% Solver

10 syms x y z A B C

11 % Assumptions

12 assume(x,'clear')

13 assume(y,'clear')

14 assume(z,'clear')

15 assume(A,'clear')

16 assume(B,'clear')

17 assume(C,'clear')

18 assume(z>0 & B>0 & C>0 & −1<x<1 & −1<y<1 & −1<A<1)

19 eqn1 = (x+y)/(1+x*y) − A == 0;

20 eqn2 = (z*(1−x^(2))^(1/2))/(x+y) − B == 0;

21 eqn3 = (z*(1−y^(2))^(1/2))/(x+y) − C == 0;

22 % Solutions

23 [solx,soly,solz] = solve(eqn1,eqn2,eqn3);

24 X = simplify(solx,'IgnoreAnalyticConstraints', true, 'Steps', 100)

25 Y = simplify(soly,'IgnoreAnalyticConstraints', true, 'Steps', 100)

26 Z = simplify(solz,'IgnoreAnalyticConstraints', true, 'Steps', 100)

27 % Output

28 X =

29 (C + B*(1 − A^2)^(1/2))/(A*C)

30 Y =

31 (B + C*(1 − A^2)^(1/2))/(A*B)

32 Z =

33 (A^2*B^2 − B^2 + A^2*C^2 − C^2 − 2*B*C*(1 − A^2)^(1/2))^(1/2)/(1 − A^2)^(1/2)
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D Calculations for the System in Section 3.6
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E Calculations for the System in Section 3.7
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